视频教程-YOLOv3目标检测:原理与源码解析-计算机视觉

本课程由资深教授白勇讲授,详细解析YOLOv3目标检测原理与C语言实现的Darknet源码,涵盖神经网络训练、GPU编程、代码阅读等关键技术,适合希望深入了解目标检测与深度学习的学员。

扫码下载「CSDN程序员学院APP」,1000+技术好课免费看

APP订阅课程,领取优惠,最少立减5元 ↓↓↓

订阅后:请点击此处观看视频课程

 

视频教程-YOLOv3目标检测:原理与源码解析-计算机视觉

学习有效期:永久观看

学习时长:568分钟

学习计划:10天

难度:

 

口碑讲师带队学习,让你的问题不过夜」

讲师姓名:白勇

研究员/教授

讲师介绍:大学教授,美国归国博士、博士生导师;人工智能公司专家顾问;长期从事人工智能、物联网、大数据研究;已发表学术论文100多篇,授权发明专利10多项

☛点击立即跟老师学习☚

 

「你将学到什么?」


Linux创始人Linus Torvalds有一句名言:Talk is cheap, Show me the code.(冗谈不够,放码过来!)。

代码阅读是从入门到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。

 

YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。

YOLOv3的实现Darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。

 

本课程将解析YOLOv3的实现原理和源码,具体内容包括:


  •      YOLO目标检测原理 
  •      神经网络及Darknet的C语言实现,尤其是反向传播的梯度求解和误差计算 
  •      代码阅读工具及方法 
  •      深度学习计算的利器:BLAS和GEMM 
  •      GPU的CUDA编程方法及在Darknet的应用 
  •      YOLOv3的程序流程及各层的源码解析


 

本课程将提供注释后的Darknet的源码程序文件。

 

除本课程《YOLOv3目标检测:原理与源码解析》外,本人推出了有关YOLOv3目标检测的系列课程,包括:


  •   《YOLOv3目标检测实战:训练自己的数据集》
  •   《YOLOv3目标检测实战:交通标志识别》
  •   《YOLOv3目标检测:原理与源码解析》
  •   《YOLOv3目标检测:网络模型改进方法》


 

建议先学习课程《YOLOv3目标检测实战:训练自己的数据集》或课程《YOLOv3目标检测实战:交通标志识别》,对YOLOv3的使用方法了解以后再学习本课程。


 

「课程学习目录」

第1章:课程介绍
1.课程介绍
2.初识Darknet
第2章:YOLO目标检测原理
1.目标检测-任务、数据集、性能指标、网络模型演进
2.目标检测-YOLOv1原理
3.目标检测-YOLOv2原理
4.目标检测-YOLOv3原理
第3章:神经网络及Darknet的实现
1.神经元与激活函数
2.卷积神经网络原理
3.神经网络训练流程
4.神经网络训练技巧:梯度下降策略与优化算法
5.神经网络训练技巧:批次归一化
6.神经网络训练技巧: 网络正则化方法
7.神经网络训练技巧:参数初始化
8.反向传播与误差(敏感度图)计算
第4章:神经网络计算的利器:blas和GEMM
1.矢量和矩阵加速运算实现方法:blas和GEMM
第5章:GPU的CUDA编程方法
1.CUDA编程方法
第6章:代码阅读工具及准备
1.代码阅读工具及准备
第7章:YOLOv3的预测和训练流程
1.YOLOv3的预测和训练流程
第8章:YOLOv3各层的源码解析
1.YOLOv3的cfg文件解读
2.程序中的主要结构体struct
3.activations和activation_layer源码解析
4.batchnorm_layer源码解析
5.connected_layer源码解析
6.convolutional_layer源码解析
7.dropout_layer源码解析
8.maxpool_layer和avgpool_layer源码解析
9.shortcut_layer源码解析
10.route_layer源码解析
11.upsample_layer源码解析
12.yolo_layer源码解析
第9章:问题与解答(Q&A)
1.图像的缩放与归一化
2.边界框的offset值计算
3.网络结构中的多尺度融合
4.正负样本的确定
5.YOLOv3的损失函数
6.前向预测过程的关键处理
7.训练过程的关键处理
第10章:课程总结
1.课程总结

 

7项超值权益,保障学习质量」

  • 大咖讲解

技术专家系统讲解传授编程思路与实战。

  • 答疑服务

专属社群随时沟通与讲师答疑,扫清学习障碍,自学编程不再难。

  • 课程资料+课件

超实用资料,覆盖核心知识,关键编程技能,方便练习巩固。(部分讲师考虑到版权问题,暂未上传附件,敬请谅解)

  • 常用开发实战

企业常见开发实战案例,带你掌握Python在工作中的不同运用场景。

  • 大牛技术大会视频

2019Python开发者大会视频免费观看,送你一个近距离感受互联网大佬的机会。

  • APP+PC随时随地学习

满足不同场景,开发编程语言系统学习需求,不受空间、地域限制。

 

「什么样的技术人适合学习?」

  • 想进入互联网技术行业,但是面对多门编程语言不知如何选择,0基础的你
  • 掌握开发、编程技术单一、冷门,迫切希望能够转型的你
  • 想进入大厂,但是编程经验不够丰富,没有竞争力,程序员找工作难。

 

「悉心打造精品好课,10天学到大牛3年项目经验」

【完善的技术体系】

技术成长循序渐进,帮助用户轻松掌握

掌握计算机视觉知识,扎实编码能力

【清晰的课程脉络】

浓缩大牛多年经验,全方位构建出系统化的技术知识脉络,同时注重实战操作。

【仿佛在大厂实习般的课程设计】

课程内容全面提升技术能力,系统学习大厂技术方法论,可复用在日后工作中。

 

「你可以收获什么?」

学懂YOLOv3目标检测原理

读懂C语言实现的Darknet源码

 

资源为视频检测算法代码包括算法的模型,算法实现的原理是:首先在视频检测跟踪之前,对所有目标已经完成检测,那么当第一帧进来时,以检测到的目标初始化并创建新的跟踪器,标注ID,输出行人图片,输出一组向量,通过比对两个向量之间的距离,来判断两副输入图片是否是同一个行人。在后面帧进来时,先到卡尔曼滤波器中得到由前面帧box产生的状态预测和协方差预测,并且使用确信度较高的跟踪结果进行预测结果的修正。求跟踪器所有目标状态本帧检测的box的IOU,通过匈牙利算法寻找二分图的最大匹配,在多目标检测跟踪问题中为寻找前后两帧的若干目标的匹配最优解,得到IOU最大的唯一匹配,在去掉匹配值小于iou_threshold的匹配对。 用本帧中匹配到的目标检测box去更新卡尔曼跟踪器,计算卡尔曼增益,状态更新和协方差更新。并将状态更新值输出,作为本帧的跟踪box,再对于本帧中没有匹配到的目标重新初始化跟踪器。 yolo v3首先通过特征提取网络对输入图像提取特征,得到一定size的feature map,通过尺寸聚类确定anchor box。对每个bounding box网络预测4个坐标偏移。如果feature map某一单元偏移图片左上角坐标,bounding box预选框尺寸为,即anchor尺寸,那么生成对预测坐标为,此为feature map层级.而为真值在feature map上的映射,通过预测偏移使得一致。类别预测方面为多标签分类,采用多个scale融合的方式做预测。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值