在数组中标注要素。
参数:
input:array_like一个要标记的array-like对象。输入中的任何非零值都计为要素,零值被视为背景。
structure:array_like, 可选参数定义要素连接的结构化元素。结构必须是中心对称的(请参见注释)。如果未提供结构元素,则将自动生成平方连通性等于1的结构元素。也就是说,对于二维输入数组,默认结构元素为:
[[0,1,0],
[1,1,1],
[0,1,0]]
output:(None, data-type, array_like), 可选参数如果输出是数据类型,则它指定结果标记的要素数组的类型。如果输出是array-like对象,则将使用此函数中标记的函数更新输出。通过传递output = input,此函数可以就地运行。请注意,输出必须能够存储最大的标签,否则此函数将引发Exception。
返回值:
label:ndarray或int整数ndarray,其中输入中的每个唯一函数在返回的数组中都有一个唯一的标签。
num_features:整型找到了多少个对象。
如果输出为None,则此函数返回元组(labeled_array,num_features)。
如果输出是ndarray,则它将使用labeled_array中的值更新,并且此函数将仅返回num_features。
注意:
中心对称矩阵是关于中心对称的矩阵。参考[1]想要查询更多的信息。
结构矩阵必须是中心对称的,以确保two-way连接。例如,如果结构矩阵不是中心对称的,则定义为:
[[0,1,0],
[1,1,0],
[0,0,0]]
输入为:
[[1,2],
[0,3]]
那么结构矩阵将指示输入中的条目2连接到1,但是1未连接到2。
参考文献:
James R. Weaver,“中心对称(cross-symmetric)矩阵,它们的基本属性,特征值和特征向量。”美国数学月刊92.10(1985):711-717。
例子:
创建具有某些函数的图像,然后使用默认(cross-shaped)结构元素将其标记为:
>>> from scipy.ndimage import label, generate_binary_structure
>>> a = np.array([[0,0,1,1,0,0],
... [0,0,0,1,0,0],
... [1,1,0,0,1,0],
... [0,0,0,1,0,0]])
>>> labeled_array, num_features = label(a)
这4个函数中的每一个都用不同的整数标记:
>>> num_features
4
>>> labeled_array
array([[0, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0],
[2, 2, 0, 0, 3, 0],
[0, 0, 0, 4, 0, 0]])
生成一个结构化元素,即使它们沿对角线接触,它们也将考虑已连接的特征:
>>> s = generate_binary_structure(2,2)
或者,
>>> s = [[1,1,1],
... [1,1,1],
... [1,1,1]]
使用新的结构元素标记图像:
>>> labeled_array, num_features = label(a, structure=s)
显示2个标记的函数(请注意,上面的函数1、3和4现在被视为单个函数):
>>> num_features
2
>>> labeled_array
array([[0, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0],
[2, 2, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0]])