初中数学知识点分为实数的概念与运算、整式与分式、二次根式及其运算、方程与方程组、不等式与不等式组、平面直角坐标系和函数、一次函数、反比例函数、二次函数、相交线与平行线、三角形、四边形、圆、图形的相似、统计、概率等十六大类。具体包括以下内容:
实数的概念与运算
1、正负数的意义
正负数可以表示生活中具有相反意义的量。
2、数轴
规定了原点、正方向和单位长度的直线就是数轴。数轴以原点为分界点,在原点左侧的点表示的是负数,在原点右侧的点表示的是正数。
3、相反数、绝对值和倒数
相反数:两个数的和为0,则这两个数互为相反数,0的相反数是0。两个相反数在数轴上所表示的点位于原点或原点的两侧,与原点的距离相同。
绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。一个数的绝对值表示这个数在数轴上所表示的点到原点的距离。
倒数:两个数的乘积为1,则这两个数互为倒数,0没有倒数。
4、实数的分类
实数包括有理数和无理数。有理数可以分为正有理数、负有理数和0,也可以分为整数和分数。整数分为正整数和负整数,分数分为正分数和负分数。无理数是无限不循环小数。
5、科学计数法、近似数
6、平方根和立方根
一个正数的平方根有两个,其中正的平方根为算术平方根,一个负数没有平方根,0的平方根是0。
一个正数的立方根只有一个,而且是正数,一个负数的立方根也只有一个,而且是负数,0的立方根是0。
7、实数的大小比较
正数大于0,0大于负数,两个负数中绝对值大的那个数反而小。
8、实数的运算
整式与分式
1、整式的概念:整式包括单项式和多项式。
2、整式的运算:包括加、减、乘、除、乘方等运算,注意运算法则。
3、因式分解:把一个多项式化为几个整式的积的形式。包括:提取公因式法、公式法等。
4、整式的化简和求值:利用整式的运算规则,对代数式进行计算、化简,再把题目给出的未知数的值代入,就可以求得代数式的值。
5、分式的概念:当分式的分母为0时,分式无意义,当分式的分母不为0时,分式有意义。
6、分式的性质:分式的分子、分母同时乘以或除以一个不等于0的整式,分式的值不变。
7、分式的化简和求值:利用运算法则对分式进行化简,再把题目给出的未知数的值代入代数式求值。
二次根式及其运算
1、二次根式的定义:当被开方