3.受控 vs 不受控
如果一个过程仅仅只有普通原因引起的变差,我们就说这个过程受控 in statistical control. 如果一个过程存在特殊原因引起的变差,我们就说这个过程不受控 out of control.
控制图的使命就是帮助我们发现并消除导致过程变异的特殊原因,这是一个使过程从不受控变成受控的过程。
在这里强调下,过程“受控”不等于“满足设计规范”;“不受控”也不是说就“不满足规范”。受控于是否满足规范是两码事。
受控并满足规范(蓝色控制限,红色规范限,下同)
受控但不满足规范
4. 中心极限定理
中心极限定理是SPC的重要理论依据。
这个定理是这样的:“设X1,X2,...,Xn为n个相互独立同分布随机变量,其总体的分布未知,但其均值和方差都存在,当样本容量足够大时,样本均值的分布将趋近于正态分布”。
如何理解?举个例子,不管全中国的30岁男人体重成何种分布,我们随机抽N个人的重量并计算其均值,那么当N足够大的时候,那么N个人的平均重量W就会接近于成正态分布。
不禁有人要问多大算“足够大”?记住:如果总体的分布对称,N〉=5时效果就比较理想了;如果总体分布不对称,一般N〉=30时候才算足够大。
这个定理还有一个重要推论: 样本均值的分布将会比总体的分布窄
,n是样本容量。
5. 合理的抽样
中心极限定理中我们说到了抽样,那么什么是抽样, 为什么要抽样呢?
抽样(Sampling)就是从研究总体中选取一部分代表性样本的方法。在SPC理论中,抽样是考虑到:1)经济性,即成本因素;2)有的质量特性只能进行抽样研究,比如需要通过破坏性实验获得的质量数据。
显然抽样是有风险的,如果抽样不合理,其结果就是“管中窥豹,略见一斑”了,因此我们说要合理抽样(rational sampling)。
合理抽样涉及到几个问题:样本大小、抽样频率、抽样类型(连续取样、随机取样or 其他结构化取样)。为了满足统计过程控制的目标, 抽样计划必须确保:样本内变差包含了几乎所有由普通原因造成的变差;子组内不存在由特殊原因造成的变差, 即所有特殊原因造成的影响都被限制在样本之间的时间周期上。
抽样大小(子组大小)会影响控制图的敏感度,样本越大能探测到的均值偏移Mean Shift 越小。一般来说,计量型数据推荐最少取4至5个连续零件,计数型数据样本一般不少于500(20~25组,每组至少25个数据)。
SPC | 理论篇
今天我们通过几个经典问题来解剖休姆哈特控制图(下文简称“控制图”),看看SPC究竟是个什么东东?
为了便于理解