算法的时间复杂度是指算法执行过程中所需要的基本运算次数。
算法是在有限步骤内求解某一问题所使用的一组定义明确的规则。(推荐学习:MySQL视频教程)
通俗地说,就是计算机解题的过程。算法的复杂性是算法效率的度量,是算法运行所需要的计算机资源的量,是评价算法优劣的重要依据。我们可以从一个算法的时间复杂度与空间复杂度来评价算法的优劣。
当一个算法转换成程序并在计算机上执行时,其运行所需要的时间取决于下列因素:
(1)硬件的速度。
(2)书写程序的语言。实现语言的级别越高,其执行效率就越低。
(3)编译程序所生成目标代码的质量。对于代码优化较好的编译程序,其所生成的程序质量较高。
(4)问题的规模。例如,求100以内的素数与求1000以内的素数,其执行时间必然是不同的。
显然,在各种因素都不能确定的情况下,很难比较出算法的执行时间。也就是说,使用执行算法的绝对时间来衡量算法的效率是不合适的。因此不能用算法程序的执行时间或程序长短来确定时间复杂度,而应该用算法执行过程中所需要的基本运算次数来衡量。
时间频率 一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为时间频度。记为T(n)。
时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
更多MySQL相关技术文章,请访问MySQL教程栏目进行学习!