计算机图像与艺术语言,计算机图形艺术设计

前言

在当代信息社会,计算机技术进入越来越多的领域,改变了原先传统的工作方式并提高了使人类生活产生了日益显著的变化。艺术设计作为这个潮流中的一部分,也有自己的数字化过程。在短短几十年里,数字艺术设计的发展几乎涉及了应用美术的各个领域——广告设计、工业设计、服装设计、影视动画、环境设计、包装设计、数码影视设计等,即使在雕塑、油画、版画、壁画等专业也出现了计算机的身影。数字艺术设计能有如此蓬勃的发展,既表现了数字化技术对传统方式的;中击,也是科技与艺术的完美结合的体现。科技的发展为艺术创作提供了载体,同时也给我们带来了全新艺术创作手法和艺术语言。.

计算机图形艺术的审美和其他艺术一样,取决于美感和体现美感的物质材料的特征。艺术是一种物化的美感,不同的艺术种类都以独特的语言构成来表现美感。在计算机图形艺术中,材料既是多样的又是统一的,诸如色彩、造型、构图等被列为审美的重要对象。任何一种色彩理论都可以在计算机中单独甚至并列地存在。在电子世界中,表现色彩是靠红、绿、蓝光线三原色不同强度的混合,色彩的丰富性和复杂性取决于设备所提供的电平强度,如果每一种基色有256级强度变化,那么3种颜色混合就可以达到1670万种颜色,也就是人类视网膜所能感知颜色的极限。然而,计算机这种对画面及其要素极端理性化的控制并没有带来创作上的僵化,相反这种被级端科学化整理和组织后的色彩体系,更加有利于艺术家灵活运用不口掌握。相加色理论和相减色理论在显示器上同时存在又相互补充,更是极大地丰富了色彩的表达能力。

现代化艺术更重视画面的表现力,除了色彩还有一些其他因素和表现方法。不同强度的构成方法,具体或抽象、形象的律动重复以及完备的细节表现等都是带来强烈的审美反映的有效手段。计算机图形艺术在绘画上的优势恰恰在这些方面。计算机图形艺术也是一种视觉媒体,其自身的造型规律决定了计算机图形艺术可以轻易地从简单图形元素中衍生出无限丰富的多样化视觉形态。..

计算机图形艺术在表现画面的细节内容上更具有无可比拟的优势。细节是对画面某一要素强化的有力手段之一。在科学与艺术联姻的今天,数码影视更是走在与计算机相结合的前列,同时也给计算机图形艺术带来更加完备的画面要素。另一方面,有了更加充分、详尽和具体的细节,则使得计算机图形艺术在对画面构成的强弱、详略、大小、轻重、虚实等画面构成的主次关系处理上更加游刃有余。

计算机图形设计艺术在21世纪的高等教育中显得越来越重要。在当前我国深化教育改革之时,教育事业必须把德、智、体、美全面发展的高素质劳动者和专门人才放在突出的战略地位。因此,与美育有密切关系的计算机图形设计艺术教学也被列为素质教育中的一门重要课程。

本书的编写是在我们长期的教学实践及科研工作的基础上,参考了国内外有关计算机图形艺术的资料,特别是兄弟院校相关课程的教材编写的。本书重视从实用角度出发,基础知识与应用实践并重,遵循“循序渐进,学以致用”的原则,精练简洁,深入浅出,重在把握理论要决,指导设计实践。图片部分选有大量的优秀示范作品及国内外最新图片资料,为读者提供了大量的设计信息,开阔设计视野。它既是艺术类高等院校学生专业基础教育选修的一本基础教材,同时又是理工科、文科及其他专业高等院校学生人文艺术素质教育选修的合适教材,也为广大设计工作者提供了理想的参考用书。

参与本书编写的主要人员有河南科技大学刘刚田、廖亮、魏风军、王智、曹慧敏,部分图片由刘蔚、王超、吴玉生等设计并提供,全书由刘刚田主编并统稿,河南科技大学崔凤奎教授审阅了全书。

在撰写此书的过程中,困难重重,幸得清华大学出版社有关领导和徐培忠老师的大力支持,特别是清华大学美术学院柳冠中教授和河南科技大学梁桂明教授的鼓励和帮助,方使此书得以完成、出版,在此一并表示由衷的感谢。虽然本书的编写人员有着丰富的教学经验及专业知识,但因时间仓促,水平有限,书中偏颇之处在所难免,尚望专家学者不吝指正。...

作 者

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值