
最近写作动力不是很充裕,向大家表示歉意(幸好也没有多少关注)。摸鱼之余,我最想先和大家聊聊的话题自然是我认为最重要的。坐标系与向量我们早在高中就开始接触,并不陌生,但是对所有物理系和要学习大学物理的学生,坐标系与向量绝对是进入物理殿堂的第一课。
话不多说,我们先谈坐标系。真正的智者从不认为对某一事物有完全的了解,坐标系这一基本概念,对初学者来说有着太多神秘之处。这里插一句题外话,对所有研究自然科学的学者来说,最忌讳的就是相信“神秘力量”,唯一能够相信的就是逻辑,所谓神秘只不过是不够了解。
就拿我们最熟悉的笛卡尔坐标系为例,你可能认为这有什么好研究的,不过是最低级的坐标系罢了。首先,这一想法就有逻辑错误,如果你以运算的复杂程度来规定知识的等级,你会发现对于特定的问题,往往有特定的方法使运算最简。在球坐标中显而易见的一个方程的解,在直角坐标里就连最顶尖的数学家也无能为力。那么何来高下之分呢?理论是没有高下的,所谓理论,都是观点而非事实。
笛卡尔坐标系(Cartesian coordinates),即直角坐标,物理中常用三维空间坐标,三维直角坐标天然存在两种旋进方向(左旋,右旋),显然它们是平权的,选择一个作为规范不足为奇。于是右手系就是我们的规范(默认的),这也是高中电磁学那一大堆左右手法则的本质。

图示就是右手系,也可以用右手螺旋定则判断,即:伸出右手五指,四指由x轴正半轴握向y轴正半轴,拇指指向为z轴正向。其实不涉及旋转时,左右没有区分的必要,但就像概率只能检验一样(人们总以为概率可以计算,却不经意间使用了检验),你可能不经意间使用了旋转的性质,所以小心为妙,不过是握一下的事,不必省略。
在质点运动学里,需要一个描述质点位置的矢量(简称位矢)r(粗体以标明矢量,物理教材通用,初学者切记)。

由坐标运算(矢量的代数描述)可知,一切参与坐标运算的矢量,始端(屁股)可随意选取(是人都选原点啦),那么位置矢量的定义就是始于坐标原点,终于目标位置的矢量,这是动力学里最重要的矢量,没有之一。教科书上有的内容,我是不想重复的,在这里我只想强调一点:由位置矢量的定义我们就可以看出,任意一个矢量,都一一对应于一个坐标。在群论里ÿ