python 金融可视化_Python金融数据可视化汇总

本文详细介绍了如何使用Python进行金融数据的可视化,包括两列数据的提取与绘图、双坐标轴设置、多图绘制以及不同类型的图表结合。通过实例展示了matplotlib库的使用技巧,如设置图例、网格、坐标轴限制等。
摘要由CSDN通过智能技术生成

通过本篇内容给大家介绍一下Python实现金融数据可视化中两列数据的提取、分别画、双坐标

通过本篇内容给大家介绍一下Python实现金融数据可视化中两列数据的提取、分别画、双坐标轴、双图、两种不同的图等代码写法和思路总结。

import matplotlib as mpl

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(2000)

y = np.random.standard_normal((20,2))

# print(y)

'''

不同的求和

print(y.cumsum())

print(y.sum(axis=0))

print(y.cumsum(axis=0))

'''

# 绘图

plt.figure(figsize=(7,4))

plt.plot(y.cumsum(axis=0),linewidth=2.5)

plt.plot(y.cumsum(axis=0),'bo')

plt.grid(True)

plt.axis("tight")

plt.xlabel('index')

plt.ylabel('values')

plt.title('a simple plot')

plt.show()

2.下面分别提取两组数据,进行绘图。

import matplotlib as mpl

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(2000)

date = np.random.standard_normal((20,2))

y = date.cumsum(axis=0)

print(y)

# 重点下面两种情况的区别

print(y[1]) # 取得是 第1行的数据 [-0.37003581 1.74900181]

print(y[:,0]) # 取得是 第1列的数据 [ 1.73673761 -0.37003581 0.21302575 0.35026529 ...

# 绘图

plt.plot(y[:,0],lw=2.5,label="1st",color='blue')

plt.plot(y[:,1],lw=2.5,label="2st",color='red')

plt.plot(y,'ro')

# 添加细节

plt.title("A Simple Plot",size=20,color='red')

plt.xlabel('Index',size=20)

plt.ylabel('Values',size=20)

# plt.axis('tight')

plt.xlim(-1,21)

plt.ylim(np.min(y)-1,np.max(y)+1)

# 添加图例

plt.legend(loc=0)

plt.show()

3.双坐标轴。

import matplotlib as mpl

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(2000)

date = np.random.standard_normal((20,2))

y = date.cumsum(axis=0)

y[:,0]=y[:,0]*100

fig,ax1 = plt.subplots()

plt.plot(y[:,0],'b',label="1st")

plt.plot(y[:,0],'ro')

plt.grid(True)

plt.axis('tight')

plt.xlabel("Index")

plt.ylabel('Values of 1st')

plt.title("This is double axis label")

plt.legend(loc=0)

ax2=ax1.twinx()

plt.plot(y[:,1],'g',label="2st")

plt.plot(y[:,1],'r*')

plt.ylabel("Values of 2st")

plt.legend(loc=0)

plt.show()

4. 分为两个图绘画。

import matplotlib as mpl

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(2000)

date = np.random.standard_normal((20,2))

y = date.cumsum(axis=0)

y[:,0]=y[:,0]*100

plt.figure(figsize=(7,5)) # 确定图片大小

plt.subplot(211) # 确定第一个图的位置 (行,列,第几个)两行一列第一个图

plt.plot(y[:,0],'b',label="1st")

plt.plot(y[:,0],'ro')

plt.grid(True)

plt.axis('tight')

plt.xlabel("Index")

plt.ylabel('Values of 1st')

plt.title("This is double axis label")

plt.legend(loc=0)

plt.subplot(212) # 确定第一个图的位置

plt.plot(y[:,1],'g',label="2st")

plt.plot(y[:,1],'r*')

plt.ylabel("Values of 2st")

plt.legend(loc=0)

plt.show()

5.在两个图层中绘制两种不同的图(直线图立方图)

import matplotlib as mpl

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(2000)

date = np.random.standard_normal((20,2))

y = date.cumsum(axis=0)

y[:,0]=y[:,0]*100

plt.figure(figsize=(7,5)) # 确定图片大小

plt.subplot(121) # 确定第一个图的位置

plt.plot(y[:,0],'b',label="1st")

plt.plot(y[:,0],'ro')

plt.grid(True)

plt.axis('tight')

plt.xlabel("Index")

plt.ylabel('Values',size=20)

plt.title("1st date set")

plt.legend(loc=0)

plt.subplot(122) # 确定第一个图的位置

plt.bar(np.arange(len(y[:,1])),y[:,1],width = 0.5,color='g',label="2nd") # 直方图的画法

plt.grid(True)

plt.xlabel("Index")

plt.title('2nd date set')

plt.legend(loc=0)

plt.show()

以上就是本次交给大家的Python制作金融数据等用到的图形化界面代码写法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值