《使用Matlab对采样数据进行频谱分析》由会员分享,可在线阅读,更多相关《使用Matlab对采样数据进行频谱分析(4页珍藏版)》请在人人文库网上搜索。
1、使用Matlab对采样数据进行频谱分析秘密2009-10-31 10:08:15 阅读454评论0字号:大中小1、 采样数据导入Matlab采样数据的导入至少有三种方法。第一就是手动将数据整理成Matlab支持的格式,这种方法仅适用于数据量比较小的采样。第二种方法是使用Matlab的可视化交互操作,具体操作步骤为:File Import Data ,然后在弹出的对话框中找到保存采样数据的文件,根据提示一步一步即可将数据导入。这种方法适合于数据量较大,但又不 是太大的数据。据本人经验,当数据大于15万对之后,读入速度就会显著变慢,岀现假死而失败。第三种方法,使用文件读入命令。数据文件读入命令有t。
2、extread、fscanf、load等,如果采样数据保存在txt 文件中,则推荐使用 textread 命令。如a,b=textread(data.txt,%f%*f%f);这条命令将 data.txt 中保存的数据三个三个分组,将每组的第一个数据送给列向量a,第三个数送给列向量b,第二个数据丢弃。命令类似于C语言,详细可查看其帮助文件。文件读入命令录入采样数据可以处理任意大小的数据量,且录 入速度相当快,一百多万的数据不到20秒即可录入。强烈推荐!2、对采样数据进行频谱分析频谱分析自然要使用快速傅里叶变换FFT 了,对应的命令即fft,简单使用方法为:Y=fft(b,N),其中b即是采样数。
3、据,N为fft数据采样个数。一般不指定N,即简化为Y=fft(b)。Y即为FFT变换后得到的结果,与b的元素数相等,为复数。以频率为横坐标,Y数组每个元素的幅值为纵坐标,画图即得数据b的幅频特性;以频率为横坐标,Y数组每个元素的角度为纵坐标,画图即得数据 b的相频特性。典型频谱分析M程序举例如下:clcfs=100;t=0:1/fs:100;N=length(t)-1;% 减 1 使 N 为偶数%频率分辨率 F=1/t=fs/N p=1.3*sin(0.48*2*pi*t)+2.1*sin(0.52*2*pi*t)+1.1*sin(0.53*2*pi*t).+0.5*sin(1.8*2*pi*。
4、t)+0.9*sin(2.2*2*pi*t);%上面模拟对信号进行采样,得到采样数据 p,下面对p进行频谱分析figure(1)plot(t,p);grid ontitle(信号 p(t);xlabel(t)ylabel(p)Y=fft(p);magY=abs(Y(1:1:N/2)*2/N;f=(0:N/2-1)*fs/N;figure(2)%plot(f,magY);h=stem(f,magY,fill,-);set(h,MarkerEdgeColor,red,Marker,*)grid ontitle(频谱图(理想值:0.48Hz,1.3、0.52Hz,2.1、0.53Hz,1.1、1.8。
5、Hz,0.5、2.2Hz,0.9);xlabel(f (Hz) ylabel(幅值)对于现实中的情况,采样频率fs 一般都是由采样仪器决定的,即fs为一个给定的常数;另一方面,为了获得一定精度的频谱,对频率分辨率F有一个人为的规定,一般要求F100秒;由采样时间ts和采样频率fs即可决定采样数据量,即采样总点数N=fs*ts。这就从理论上对采样时间ts和采样总点数N提岀了要求,以保证频谱分析的精准度。3、数据长度的选择频率分辨率F,顾名思义就是频谱中能够区分岀的最小频率刻度。如F=0.01,则频谱图中横坐标频率的最小刻度为0.01,即 0.02Hz和0.03Hz是没有准确数据的,但Matlab。
6、在画图时对其进行了插值,故而plot作图时看到的频谱是连续的。但用stem来作图就可以看出频率是离散的,stem对了解F的含义非常有帮助。由此,我们可以进一步思考。如果信号所包含的频率分量不是F的整数倍,那么这个频率分量就不会得到正确的反映。如信号包含1.13Hz频率分量,而 F=1/ts=fs/N=0.02 ,_则1.13/0.02=56.5,不等于整数,即在频谱图中找不到准确的刻度,而只能在第56和57个频率刻度上分开显示其幅值,这自然就不准确了。因此,请大家在频谱分析时一定要使F能够被频率精度整除。如要求频率精确度为 0.01,则F最大为0.01,也可取值为0.02、0.05、0.001。
7、等数据,使0.01/F=整数。而F仅仅由采样时间ts (也称数据长度)决定, 因此一定要选择好ts,且要首先确定ts的值。作为验证,对上面的程序做一个修改:将t=0:1/fs:100;改为t=0:1/fs:83;即ts由100改为83,_则F=1/ts由0.01变为0.012。二者分别作出频谱图对比如下:21.510.52 5210.5055225f(Hz)1.5*2.5上图 1 频谱图:ts=1OOs , F=1/ts=O.O1上图 2 频谱图:ts=83s , F=1/ts=0.012的幅值泄漏到了其他频率。f(Hz)X=0.53 丫 k 1.0B77X 1JS Y- 0 49593K=0。
8、.46 Y=1 3036I illI in?(?: 0.48Hz,1,3? 0.52HZ2.1? 0.53Hz,1.1 ? tBHzfl.5? pJHzJOJD2.5r:1:对比上面两个图即可发现,图2中由于f/F不是整数,在横坐标中找不到对应的刻度,从而使得各个频率? ? ? ( ? ? ? : 0.48Hz,1,3|? |0.52Hz2.1F (0.53HzJ 1? |1.8Hz,05|? 2.2Hz,0.9JK= 0.51307=2 0339X=2M48Y- 0.70586X-0,4B183Y- 1 3026I j X= 0.53012|;|Y= 0.82879;X- 0.52:Y-2.1042X- 1.7952 g 0.37436总结上面的结论,在保证采样定理所要求的二倍频的前提下,并不是采样频率 fs或 采样点数N越大越好,而是要控制好数据长度ts,使频率分辨率F满足频率精 度。