python中符号计算三维可视化_Python科学计算三维可视化 python基础教程

课程概述

一图胜千言,无图无真相。对于很多科学和工程问题,三维可交互的表达将是分析和深入理解问题的重要步骤,也是数据最好的可视化方式,科学计算揭示真理,一起来让真理更加立体吧!

本课程面向科学和工程背景的编程学习者,讲解利用Python语言对科学计算数据进行表达和三维可视化展示的技术和方法,帮助学习者掌握利用三维效果表达科学和工程数据的能力。

本课程介绍Python计算生态中最优秀的科学计算分析和三维可视化技术,三维可视化在理学、工程、医学等学科领域应用极其广泛,包括必修内容和选修内容两部分。

必修内容包括:

(1)Python第三方库TVTK,讲解科学计算三维表达和可视化的基本概念;

(2)Python第三方库Mayavi2,讲解科学计算三维表达和可视化的使用方法;

(3)Python第三方库TraitUI,讲解交互式科学计算三维效果应用的开发方法。

选修内容介绍:

(1)初步介绍科学计算中常用拟合、优化、统计、线性代数、数值分析等方法;

(2)Python第三方库SciPy,初步介绍最强大的科学计算工具箱。

该课程希望传递“理解和运用计算生态,培养集成创新思维”的理念,重点培养学习者运用当代最优秀第三方专业资源,快速分析和解决问题的能力。

“人生苦短,不要刀耕火种”,嵩老师教你直面问题和需求,用最好的工具解决它!

证书要求

本课程采取百分制,客观题和主观编程题各占50分。60分-79分可获得合格证书,80分以上可获得优秀证书,满分者将获得嵩老师的额外神秘大礼。

预备知识

本课程需要学习者具备Python语言编程的基本知识和初步技能,建议Python零基础学习者先修嵩老师的“Python语言程序设计”课程。具体地,学习者需要预先掌握Python的数字类型、字符串类型、分支、循环、函数、列表类型、字典类型、文件和第三方库使用等概念和编程方法。

本课程需要学习者掌握第三方库Numpy的基本使用,建议先修嵩老师的“”Python数据分析与展示”专题课程。

授课大纲

根据第三方库内容特点,课程共分8个内容模块和1个实战模块:

模块1:科学计算可视化及第一个三维展示实例(利用Mayavi绘制心形隐函数曲面)

模块2:TVTK库介绍、流水线模型、数据加载

模块3:Mayavi2库介绍和入门基础,使用mlab绘制三维网格面效果

模块4:使用mlab绘制三维标量场和矢量场效果

模块5:TraitUI库的基本使用和交互式三维可视化应用开发

模块6(实战):实战项目1

模块7(选修):SciPy库的介绍和拟合与统计运算

模块8(选修):SciPy库的线性代数、积分和插值等运算

参考资料

Python集成开发环境(IDE)

[1] Anaconda: https://www.continuum.io/ (推荐)

[2] IDLE: Python解释器默认工具

[3] PyCharm:http://www.jetbrains.com/pycharm/

参考教程

[1] Python零基础入门教程:《Python语言程序设计基础(第2版)》,嵩天等著,高等教育出版社

[2] 本专题教程:无

参考网站

[1] Python Mayavi2: http://docs.enthought.com/mayavi/mayavi/

[2] Python TVTK: http://code.enthought.com/projects/mayavi/

常见问题

Q1:除了Python,这个课程需要其他编程语言基础吗?

A1:

不需要,但需要学习者掌握NumPy库的基本使用,建议先修嵩老师的“Python数据分析与展示”专题课程,或者请学习专题内提供的自学资料。

Q2:Python 2.x和Python 3.x,这个课程采用哪个版本?

A2:

Python 3.x已经足够成熟,这是Python语言的现在和未来,嵩老师所有Python课程都采用Python 3.x系列版本。

Q3:在线开放课程看不到老师,有问题谁来解答?

A3:

为了更好服务同学们,本课程教师和多名助教会每天在线答疑,尽快解决与课程相关的各类问题。

Q4:课程里面除了视频有什么新的形式吗?

A4:

大学老师都是一本正经的,但你见过大学老师闲扯吗?课间,嵩老师想说说不一样的话...

内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值