
数学建模是用数学方法解决各种实际问题的桥梁,它已经渗透到各个领域,而且发挥出越来越重要的作用。面对自然科学和工程应用中的难题,大部分人无从入手,而个别人却能短时间内给出切实可行的解决方案,其差别往往在于驾驭数学知识的能力不同。现代计算机技术的应用不仅减少了计算错误,而且加强了数学应用者解决问题的能力。MATLAB是一款常用的数据处理软件,为了更好的应用MATLAB软件,我将整理好的MATLAB函数分享到今日头条上,以利己利人查阅。
MATLAB提供的很多数据分析与统计函数都是面向列的,即矩阵中的每一列代表一个变量的多个观测值,其列数对应于变量数,行数对应于测量点数。
max和min函数可求出数据的最大值和最小值,mean和std函数可求出数据的均值和标准差,sum和prod函数可求出数据元素和与数据元素积。例如,对MATLAB内含的某城市24小时的车流量数据count.dat可作分析:
load count.dat
mx=max(count)
mx = 114 145 257
mu=mean(count)
mu = 32.0000 46.5417 65.5833
sigma=std(count)
sigma = 25.3703 41.4057 68.0281
对有些函数还可给出位置,例如,在求出最小值的同时,可得到最小值所在的位置(行号):
[mx,indx]=min(count)
mx = 7 9 7
indx = 2 23 24
1、协方差和相关系数
cov函数可以求出单个变量的协方差,而corrcoef函数可求出两个变量之间的相关系数,例如:

本文介绍了如何使用 MATLAB 进行数据分析,包括求解最大值、最小值、均值和标准差,协方差和相关系数计算,数据预处理,回归和曲线拟合,以及傅里叶分析和 FFT 应用。通过实例展示了 MATLAB 在处理实际问题中的强大功能。
最低0.47元/天 解锁文章
524

被折叠的 条评论
为什么被折叠?



