第三讲
方程与不等式(基础)
一
方程


二
方程与不等式




学习建议
初一
主要内容有一元一次方程。一元一次方程小学时学过,但很多小学教的解法和初中不太一样,学生需要转换思维,习惯初中的解法——移项,解的过程中要注意符号问题。与一元一次方程有关的应用题难度并不比小学的大多少,学生不必有畏难情绪。不过初中阶段考察时除了小学的那些常规题型外,还会涉及到与数轴的结合,学生要重点学习标记方法和技巧,从而才能顺利列出方程
初二
主要内容有二元一次方程组、一元一次不等式和分式方程。二元一次方程组的学习中主要是学会解二元一次方程组的两种方法——代入消元法和加减消元法。其中第一种方法主要用于一次函数的函数解析式的求解,第二种方 法使用频率更高。一元一次不等式的难度比较大,关键就在于解含参不等式时对界点问题的分析判断,要学会画图辅助理解,同时注意不等号是否会变向。相关的应用题难度不大,和初一所学的一元一次方程的相关应用难度接近分式方程在解的时候最关键的就在于最后要检验解出来的根是否会使得分母等于0。两种比较难的题型——增根和无解,是学生需要下功夫的,能理解最好,哪怕不能理解,也至少要做到书写模式化的步骤会。分式应用题在选择未知数时的技巧是上课时需要重点去听的。初三
主要内容是一元二次方程。这是整个初中阶段的重点难点,也是中考的必考考点。主要包含:①定义;②解方程;③根的判断;④韦达定理及变形使用;⑤在后期与二次函数相结合的考察,这五个大的知识板块。前三点比较基础,其中板块②学的时候会学到四种解法,但其中最重要的是“因式分解法”和“公式法”,其中“因式分解法”最好能比较好的掌握,因为它的解题速度比较快,但本身因式分解就不过关的学生,也可以不去管“因式分解法”,重点掌握“公式法”。韦达定理本身不难,主要是一些变形需要学生明白方法技巧。与二次函数的结合相对较简单,是最基础的数形结合思想的应用
中考A卷主要考察上述五个知识板块的基础部分——定义和求解。B卷填空有时会考到韦达定理或不等式组,但难度达不到当初学的时候遇见的难题难度,26题会考一道应用题,一般都是不等式与一元二次方程的结合,难度也属于中等
