两条平行导线同向电流_大物学习笔记(十六)——磁场对载流导线的作用与磁介质...

博客介绍了安培力、磁力矩、磁场的功及磁介质相关知识。给出安培力公式及推导,介绍线圈磁力矩和磁矩公式,通过例题展示计算方法。还阐述磁场的功的计算,以及磁介质的磁化、分类、分子磁矩、磁化强度等内容,提及相关定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录:

空山新雨后:大物学习笔记(目录)​zhuanlan.zhihu.com
d6ee91bf7f8bf910d94d91401e7feabb.png

安培力

  • 公式:
    (B和L都是向量,同样满足向量叉乘)如果不是直线的话,利用微分的思想。
    • 对于任意曲线:如果磁场强度不变可以连接首尾等效代替。

2799cd1907c741c3603a150a3d2f5699.png
  • 推导:单个电荷的受力
    。单位长度的受力就是
    。然后积分就是

6cca2efeb281db5575af2721a968de86.png

例题

0aba696906f9cda1277cb190c460f7c2.png

9c596176deec157d40b854e634b4188c.png

磁力矩

  • 线圈的磁力矩:
    (P与B都是矢量,满足矢量叉乘)
  • 线圈的磁矩:
    。(N线圈匝数,I线圈中电流,S线圈面积)
    适用于任意形状的线圈

例题

1.有一半径为R的闭合载流线圈,通过电流I。今把它放在均匀磁场中,磁感应强度为B,其方向与线圈平面平行。求:以直径为转轴,线圈所受磁力矩的大小和方向。

3e1a0fdee478646d4c30c9741e26424c.png

解法一:利用微元的思想

以直径为转轴,那么直径上的受力肯定不产生力矩。那么圆弧上,单位长度的力矩就是

。单位长度

所以积分

解法二:利用公式

所以


磁场的功

  • 载流导线在磁场中运动:
  • 磁力矩的做功:
    (力矩做功参见刚体运动大物学习笔记(二))

例题

43525593f34abfc1183e29923e474b76.png

32ae92270b2a2138c9e6084cc7d41067.png

磁介质

  • 物质的磁化: 当一块介质放在外磁场中将会与磁场发生相互作用,产生一种所谓的“磁化”现象,介质中出现附加磁场。我们把这种在磁场作用下磁性发生变化的介质称为“磁介质”。简单来讲就是有了一个磁场,介质在此磁场的作用下,产生一个附加磁场,介质中的磁场就发生了变化。
  • 磁介质中的磁场:
  • 相对磁导率
  • 四种磁介质:
    • 顺磁性介质:介质磁化后呈弱磁性。附加磁场
      与外场
      同向。
    • 抗磁性介质:介质磁化后呈弱磁性。附加磁场
      与外场
      反向。
    • 铁磁性介质:介质磁化后呈强磁性(如电磁铁的铁芯)。附加磁场
      与外场
      同向。
    • 完全抗磁体:磁介质内的磁场等于零(如超导体)。附加磁场
      与外场
      等大反向。

886be2c3b16d7d966d02c33e2cb324cf.png
  • 分子磁矩:
    。分子中各电子的轨道运动和自旋产生的磁矩之和。(计算参加磁矩)

bd1ed296d09d56bd1121416c56525c83.png
  • 磁化强度:
    。磁化强度是空间坐标的矢量函数。当磁化强度矢量为恒矢量时,磁介质被均匀磁化。
    • 单位:A/m
  • 有介质存在时的高斯定理 :
    。磁介质在磁化后,由于外磁场和附加磁场都属于涡旋场。因此,在有磁介质存在时,磁场中的高斯定理仍成立。
  • 有介质存在时的安培环路定理 :
    • 满足:
      (证明过程参考电场的介质中的高斯定理)

(所有图片均来自网络,侵删)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值