matlab龙格库塔法求通解,基于matlab及龙格库塔法求解布拉修斯方程.doc

基于matlab及龙格库塔法求解布拉修斯方程

Runge—Kutta法求解布拉修斯解

摘要

薄剪切层方程主要有三种解法,即相似解,非相似条件下对偏微分方程组的数值解和近似解。布拉修斯解是布拉修斯于1908年求出的,它是零攻角沿平板流动的相似解。本文用四阶Runge—Kutta法求解高阶微分方程的方法,并用matlab编程实现,求得了与实际层流边界层相符合的数值解。

关键词:布拉修斯解,相似解,Runge—Kutta法,数值解。

1 布拉修斯近似解方程

二维定常不可压缩层流边界层的方程为:

(1)

(2)

边界条件为

将式(1)和式(2)进行法沃克纳—斯坎变换(简称F—S变换),将边界层方程无量纲化,即设

(3)

(4)

得出F—S变换后的动量方程

(5)

其中k为流动类型指标,横曲率项t为

(6)

m是量纲一的压力梯度参数,定义为

(7)

其边界条件变为

对于二维平面实壁流动()可以忽略横曲率项t的轴对称流动,式(5)成为

(8)

根据相似解的定义,方程(8)中的函数f若式相似的,则它应只与η有关而与x无关,即对x的偏导数应为零。于是方程(8)应成为

(9)

若fw为常数,则方程(9)的边界条件为

2 布拉修斯解

布拉修斯于1908年求出了零攻角沿平板流动的解。这时

因而方程(9)成为

(10)

此即布拉修斯方程。对于实壁,,边界条件成为

3 Runge—Kutta法求解

Runge—Kutta通过将高阶微分方程化为一阶线性方程组,从而解出高阶方程的数值解。在方程(10)中令

(11)

于是方程(10)变为

(12)

当区步长为h,有四阶Runge—Kutta的形式如下

(13)

使用matlab软件取步长为0.2,迭代100步视作η→无穷大。迭代到第40步左右就收敛了,迭代结果如下(本文附录有全程序源代码)

表格 1平板层流边界层方程的数值解

f0000.332060.20.0066410.0664080.331990.40.026560.132770.331470.60.0597360.198940.330080.80.106110.264710.3273910.165570.329780.323011.20.237950.393780.316591.40.322990.456270.307871.60.420330.516760.296671.80.529520.574760.2829320.650030.629770.266752.20.78120.681320.248352.40.92230.728990.228092.61.07250.772460.206462.81.2310.811510.1840131.39680.846050.161363.21.56910.876090.139133.41.7470.901770.117883.61.92950.923330.0980873.82.1160.941120.08012642

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值