空气动力学(笔记自留)-第六章

第六章 黏性不可压流动与边界层

6.1 黏性流体运动特点

首先通过两个流动例子观察黏性流动与无黏流动的差别,分析黏性对流动的影响。然后介绍黏性流体运动的两种不同形态:层流与湍流。
观察流过无厚度平板的直匀流动。当理想流体沿平行于平板方向流过时,在平板表面流体质点滑过平板,但不能穿过平板(通常称作不渗透条件)。平板对流动无阻滞作用,阻力为零。黏性流体流过时,紧贴平板表面的流体质点黏附在平板上,与平板表面不存在相对运动,也就是说,在边界面上流体质点必须满足无滑移条件。随着离开平板距离的增大,流体速度由壁面处的零值迅速增大到来流的速度。这样在贴近平板的区域流动速度梯度很大,流体层之间的黏性切应力不能忽略,此区域称为边界层区。平板对流动起阻滞作用,平板阻力不为零。
考察圆柱绕流,理想流体圆柱绕流时圆柱表面上法向速度为零,但周向速度除前后驻点均不为零,即无渗透但有滑移。另外流速上下、前后都是对称的,相应地,压强分布也是上下、前后均对称的。因此在圆柱所受的流体压强的合力在x,y方向均为零,在流动方向没有阻力,是达朗贝尔谬论的一个例子。实际流体的压强分布上下是对称的,但前后不再对称。并且随着雷诺数的不同,绕流压强分布也不同。但它们与理想流动有一个共同区别:黏性流动中圆柱体的背流面压强系数为复数。背流面压强小于迎流面压强,使圆柱受到流体向后的作用力,即压差阻力。
流体在圆柱后部处于减速增压的流动阶段,但由于黏性摩擦,壁面附近边界层内流体的动能在流动过程中不断消耗,流体剩余的动能已不足以克服迎面的高压,到s点就停滞下来。后面更高的压力使微团向相反的方向运动,形成倒流,使上游来的流体边界层与固体壁面脱离,这种现象称为边界层分离。流体分离后,静压不易再有较大回升,并在其后形成宽的尾迹。分离点的位置和尾迹流的宽度和特性取决于雷诺数Re的值。雷诺数较小时对应层流,流体容易分离;雷诺数较大时对应于湍流,流体不易分离。所以雷诺数较低时圆柱背流面低压区范围更广。
黏性摩擦应力与物面的1黏附条件(无滑移条件)是实际黏性流动区别于理想流体运动的主要标志。黏性存在是产生阻力的原因,摩擦阻力、压差阻力本质上起因于黏性。在解决运动流体的阻力、流动分离等问题中,黏性作用已占主导地位,不能再忽略。

6.1.2 黏性流体流动的两种状态

黏性流体的运动存在两种不同的流动型态(流态):层流与湍流,湍流也称紊流。

  1. 雷诺圆管试验
    在管径d和流体运动黏度v都不变的情况下改变流速,发现流态与后来称为雷诺数的无量纲参数(Re=U0d/v)有关,其中U0为管道横截面的平均流速。
    Re<2000时,染色的流丝几乎完全是一条清晰的直流线,说明管中的水流是稳定的沿轴向平行运动,相邻薄层的流速各不相同,但各层间并无宏观的掺混现象,这样的流态称为层流。当速度增大,染色的流丝在下游破碎,迅速与周围流体掺混而时整个流体染上颜色。混合得很好的区域是湍流。此时的流体仍可分辨出一簇簇清晰的卷曲流丝。
    流动从层流演变为湍流的现象与过程称为转捩。从层流转变为湍流的Re大小和许多因素有关。雷诺数在临界雷诺数以下时,即使存在对水流的强烈扰动,扰动也将由于流体的黏性而衰减,流动继续保持层流状态。
    Re增大后流动由层流过渡到湍流的现象不仅在圆管流动中存在,在其他流动(如边界层、自由剪切层流动)中也能观察到。Re表征流体运动时微团所受的惯性力与黏性力典型值之比。Re较小时表明流体惯性力相对较小、黏性作用相对较强,此时由于黏性力的束缚使流体运动比较规则而呈现出层流状态;Re较大时则说明流体微团的惯性作用较大、黏性作用较弱,流体容易突破黏性力的束缚,发生不规则的脉动,呈现出湍流状态。不同流动中流动过渡过程的形态相差很大,有各自不同的特点。
  2. 层流与湍流的主要特征
    当流体作层流流动时,各流体质点的迹线是光滑而规则的,无宏观掺混。相反,湍流中流体的运动是不规则的、弯曲的,沿主流方向与横向(与主流垂直)均有宏观掺混。
    层流是很光滑的流动,即流体的速度、压力等参数随时间和空间的变化都很平滑;
    湍流是很不规则的流动,即流体的速度、压力等随时间和空间都以很不规则、不光滑的方式变化,湍流是紊乱的和混乱的,也称为紊流。
    黏性流体相邻两流层之间会发生动量·、能量和质量等宏观物理量的输运。湍流对动量、能量和质量的输运能力比层流大得多。
    层流和湍流都服从黏性流体运动的基本方程组——纳维-斯托克斯方程组。
    光滑和规则的层流表现确定性,符合N-S方程在给定初始和边界条件下的确定性解。脉动和紊乱的湍流表现随机性(高雷诺数时对初始条件及其敏感)。
    层流和湍流是黏性流体运动中两种不同的稳定状态。层流在雷诺数较低的状况下出现,自然界和工程实践中经常发生的是湍流。
6.1.3 N-S方程组的求解

由于层流运动宏观上的规则性和确定性,可以直接从N-S方程组出发通过求解方程求解流程。对于不可压流,不需要耦合能量方程求解,完整的微分方程为:ρ·∂V/∂t+ρ(V·▽)V▽·V=0
这是一飞线性二阶偏微分方程组,由于实际问题的边界条件比较复杂,一般情况下该方程难于求解。流体力学中解决上述非线性方程组通常有以下两种途径。

  1. 准确解
    一些简单问题中,非线性的惯性项等于零或呈现出非常简单的形式,这时方程组或者化为线性的,或者化为简单的非线性方程组,可以解出准确解来。
  2. 近似解
    根据问题的物理特点,略去方程中某些次要项,从而得出近似方程。
6.2 N-S方程层流解析解举例

最简单的黏性流动就是不可压缩流体的平行流动。这种流动只有一个速度分量不为零,所有的流体微团沿同一方向运动。

6.2.1 不可压平行流的控制方程

取直角坐标系,并把运动方向取作x轴方向,则只有流速u≠0。再根据不可压流的连续方程▽·V=0立即得到∂u/∂x=0,即运动速度u不随x变化。所以对于不可压平行流,有u=u(y,z,t),v=0,w=0
对气体,通常可略去彻体力项。有∂p/∂y=0∂p/∂z=0
压力只是坐标x和时间t的函数,p=p(x,t)。非线性的惯性项为零,得到ρ·∂u/∂t=-∂p/∂x+μ(∂^2u/∂y^2+∂^2u/∂z^2)
上式就是不可压平行流动的控制方程,给定初始和边界条件后求解该方程即可确定流场的速度分布。
二维泊肃叶流动、库埃特流动和充分发展的管流都可以看成这种平行流动的实际粒子。

6.2.2 库埃特流动

设有两无限宽的平板平行放置,相距2h。上板以速度U匀速向右运动,下板不动。取x轴平行于板的运动方向且位于量板间距中分线,y轴垂直于版面,z轴沿平板宽度方向(垂直纸面向外)。流动是定常的。

  1. 方程及求解
    因流动定常,速度与t无关;又因平板无限宽,所以速度在z方向的变化率为零。从而u=u(y),控制方程为μ·d^2u/dy^2=dp/dx,边界条件为y=-h:u=0;y=h,u=U
    由于p只是x的函数,u只是y的函数,只要上方程有解,dp/dx只能为常数。也就是说,只有dp/dx为常数的情况,才可能出现这样的二维定常平行流动。将上式对y积分,再由边界条件定出积分常数,得到速度分布为u=U/2(1+y/h)+h^2/2μ·(-dp/dx·[1-(y/h)^2]
  2. 两类特殊流动情况
    当上板的速度U=0,就是二维泊肃叶流动,即两静止平行平板间的定常二维流。此时速度分布为u=umax[1-(y/h)^2]
    可见速度剖面为抛物线。等式右端的负号说明速度指向压力降低的方向。式中,umax为最大速度,位于中线x轴。
    当压力梯度为零时,有u=U/2·(1+y/h)
    这种特殊情况为简单库埃特流动,即流体完全是由运动的壁面通过黏性力而拖动。
  3. 压力梯度的影响
    一般的库埃特流动是简单库埃特流动和二维泊肃叶流动的叠加,其中泊肃叶流动反映的是压力梯度的影响。定义如下的无量纲压力梯度:B=h^2/μU·(-dp/dx)来分析压力梯度的影响。
    对于B>0,即压力沿流动方向下降,称为顺压梯度,在整个流动中速度为正。当B足够大时,即压力梯度影响远远超过上板速度影响时,流动接近泊肃叶流。当B<0,即压力沿流动方向增加时,称为逆压梯度。当B小于某个负值后,靠近静止壁面的某些区域内速度为负,即出现逆流。开始出现逆流的条件为du/dy|y=-h=0。对应于dp/dx=μU/2h^2,B=-1/2,而当B<-1/2,dp/dx>μU/2h^2,du/dy|y=-h<0。说明这时上面速度较大的流层对静止壁面附近流层的拖动力不足以克服逆压力梯度,因此出现逆流。
6.2.3 哈根-泊肃叶流动

哈根-泊肃叶流动是直圆管中的平行流动。对于等截面管流动,流体自大空间进入管道后,在管道进口有相当长一段距离流场受进口的影响,沿长度方向流动会逐渐变化。经过一段长度后,进口的影响逐渐消失,流动达到稳定。进口附近的流动变化段称为管道流的起始段,起始段附近的流动称为充分发展的管道流。哈根-泊肃叶流动是充分发展的定常管流,并且以管道直径为特征长度、截面平均速度为特征速度的雷诺数低于临界雷诺数,以保证流动为层流。
管道流动中常需要考虑彻体力。可引入函数P,将动量方程中的彻体力项和压力梯度项合并。令▽P=▽p-ρf
此时动量方程类似不计彻体力的方程,为μ(∂^2u/∂y^2+∂^2u/∂z^2)=dP/dx=const
对哈根-泊肃叶流动,由于问题的轴对称性,采用柱坐标系(r,θ,x)。以管道中心线为x轴,径向和周向速度为零,轴向速度u只随径向位置r变化。
柱坐标系下的动量方程为μ(d^2u/dr^2+1/r·du/dr)=dP/dx=const
边界条件为r=r0:u=0;r=0:du/dr=0

  1. 速度分布
    将方程改写为μ·1/r·d/dr·(rdu/dr)=dP/dx,积分可得u=1/4μ·dP/dx·r^2+C1Inr+C2
    根据边界条件得C1=0,C2=-1/4μ·dP/dx·r0^2
    从而得u=-1/4μ·dP/dx(r0^2-r^2)
    可见这是轴对称的旋转抛物面。最大流速在中心线上,为umax=-1/4μ·dP/dx·r0^2
  2. 直圆管流常用参数
    根据哈根-泊肃叶流的速度分布可以求得工程上常用的一些参数。
    流量为G=πr0^2/8μ·(-dP/dx)
    横截面上平均流速为U0=r0^2/8μ·(-dP/dx)
    可见U0=umax/2
    壁面处切应力为τrx|(r=r0)=-4μU0/r0
    根据切应力正负号含义规定,流体受到的切应力方向沿负x轴,即受到管壁施加的与流速相反的摩擦阻力。以τw代表物体受到的摩擦切应力系数值,则τw=-τrx|(r=r0),从而得到壁面摩阻系数为Cf=τw/(1/2·ρU0^2)=16/Re
    式中,Re为以圆管直径d为特征长度,截面平均流速U0为·特征速度定义:Re=U0d/v
6.3 边界层概念

首先介绍一下大雷诺数下物体绕流的特性和普朗特边界层理论提出的背景

6.3.1 大雷诺数下物体绕流的特性
  1. 理想无黏理论不适用于壁面附近
    壁面附近,必须考虑黏性力的影响。
  2. 普朗特提出的边界层理论
    微小黏性流体绕流物体时,黏性的影响仅限于贴近物体的薄层中;在这一薄层以外可以忽略黏性,采用经典的无黏流体力学方程描述流动。普朗特将固壁边界附近黏性其重要作用的这一薄层称为边界层,并且根据大雷诺数下边界非常薄这一前提,对N-S方程进行简化,得到了普朗特边界方程。
  3. 大雷诺数下物体绕流特性
    大雷诺数下物体绕流的整个流场可以划分为边界层、尾迹层和外部无黏层。大雷诺数下边界层厚度(记为δ)其实很小。
    边界层内,流速由壁面上的零值急速增加到与自由来流速度V∞同数量级的值,因此沿壁面法向方向的速度梯度很大,即使流体的黏度很小,表现出的黏性力也较大。雷诺数不能反映壁面附件边界层内惯性力与黏性力之比的原因是:边界层内黏性力典型值为∂(μ∂u/∂y)/∂y~μV∞/δ^2而非μV∞/L^2
    同时,由于速度梯度很大,使得通过边界层的流体具有相当大的旋涡强度,流动是有旋的。当边界层内的黏性有旋流离开物体流入下游时,在物体后面形成尾迹流。在边界层和尾迹以外的区域,流动的速度梯度很小,黏性力的影响也很小因而可以忽略,流动是无黏和无旋的。
    综上可知,大Re数情形下的物体绕流,在边界层和尾迹区域内是黏性流体的有旋流动,边界层和尾迹区外的流动可视为无黏和无旋的流动。问题归结为分别求解边界层(含尾迹区)和外流区的流动,然后将所得的解拼接起来,就可获得整个流场的解。
6.3 2 层流与湍流边界区

与圆管内流动一样,边界层内的流动也有层流和湍流之分。对光滑平板,并且来流脉动程度不大,平板边界层起初总有一段是层流流态。越往下流,层流边界层越厚。到一定距离后,经过一个过渡区,流态就发生变化,转变为湍流边界层。

6.3.3 边界层厚度
  1. 边界层名义厚度
    在边界层和外部无黏流之间没有严格的分界线,在平板边界层外缘,流向速度u是渐进地达到外流速度Ve。实际上,u→Ve的渐进过程非常迅速,当y大于某一值,u和Ve差别很小,黏性的影响很小。因此常以流向速度渐进的程度来定义边界层厚度δ。通常沿壁面法线向外推移,将流向速度达到外流速度的某个百分数(如u=0.995Ve)的位置和壁面间的距离定义为边界层厚度,并称为边界层的名义厚度。例如δ995表明此百分数为99.5%。
  2. 边界层厚度的量级估计
    边界层的厚度随流体流经物面的距离增大而逐渐增大。这是因为流体沿物面流动时,紧贴边界层的一层流体要不断受到边界层内流体黏性的影响而逐渐减速,所以流体沿物面流过的路程越长,边界层就越厚。
    可根据边界层中黏性力项与惯性力项具有相同量级这个特点,来大致估计边界层的厚度。惯性力项和黏性力项的量级分别为ρu·∂u/∂x~ρV∞^2/l∂(μ∂u/∂y)/∂y~μV∞/δ^2
    其中l表示流体沿物面流过的路程。若ρV∞^2/l~μV∞/δ^2则有δ~sqrt(μl/ρV∞)=l/sqrt(Re)或δ/l~1/sqrt(Re)
    对于层流边界层,数学分析及试验结果说明上式的正确性。湍流边界层比层流边界层厚很多,不过湍流边界层厚度与流动的集合尺度相比仍是小量,随雷诺数的变化趋势也是一致的,即雷诺数越大,δ/l越小。
  3. 边界层位移厚度和动量亏损厚度
    边界层名义厚度δ形象地表明了边界层的存在范围。
    1 . 位移厚度(排挤厚度)
    边界层存在的主要影响之一是将理想无黏流的流线向离开物体壁面的方向推移。这是因为靠近壁面的边界层中流体因粘滞作用而缓慢了,为满足连续方程,流道得扩张,才能让一定量的流体通过,因此无黏流流线向外偏斜。
    对于二维平面流动,从y=0到y=h之间通过x=const的任一站所流过的质量流率为∫(0-h)ρudy
    若不存在边界层,则有u=Ve和ρ=ρe(下标e代表边界层外缘处),质量流率为∫(0-h)ρeVedy
    因此,由于边界层的存在所引起的从y=0到y=h间的质量流率的减少为∫(0-h)(ρeVe-ρu)dy
    该减少的流率在外部无黏流中对应的厚度为δ*=∫(0-h>δ)(1-ρu/ρeVe)dy
    δ*称为位移厚度或排挤厚度,就是理想无黏流流线被外推的距离。可以说,由于边界层的存在而排挤了厚度为δ*的无黏流体的流量。定义中,由于在边界层之外被积函数接近于零,所以积分上限的选取并不重要,只要保证h>δ就行。
    不可压流的位移厚度为δ*=∫(0-h>δ)(1-u/Ve)dy
    2 . 动量亏损厚度
    为反映由于边界层的存在而引起的动量流率的变化,人们定义了动量亏损厚度(简称动量厚度)。动量流率为质量流率与单位质量的动量(即速度)的乘积,因此动量亏损为:实际的质量流率与单位质量的动量亏损(=Ve-u)的乘积,而动量厚度则定义为具有此亏损的动量大小的理想无黏流的厚度,即θ=∫(0-h>δ)[(ρu/ρeVe)(1-u/Ve)]dy
    可见θ的物理意义为:由于边界层的存在而损失了厚度为θ的理想无黏流的动量流率。不可压流的动量厚度为θ=∫(0-h>δ)[(u/Ve)(1-u/Ve)]dy
    动量厚度反映动量的损失,应与壁面摩擦阻力有直接关系。其实平板受到的摩擦阻力Df就可用动量厚度表示为Df=ρeVe^2θ
    Df表示从平板前缘(x=0)到x=x1之间平板单位宽度(z方向尺度为1)上所受到的总摩擦力,θ为x1处的动量亏损厚度。
    边界层各种厚度的定义式,既适用于层流也适用于湍流。边界层各种厚度值都是随着流体沿物面流过的路程增长而增加的。
6.4 二维不可压流边界层微分方程

大Re下边界层很薄。对层流边界层,δ/l~1/sqrt(Re);湍流边界层也有δ/l为小量这个特点。当δ/l远小于1时,N-S方程中的某些项会很小以致可以忽略,从而得到比N-S方程有很大简化的边界层方程。普朗特当初导出边界方程是以雷诺数作为量级分析的基本量,即Re为大数,δ/l~1/sqrt(Re)为小量。这个关系对层流边界层是正确的,但不适用于湍流。

6.4.1 边界层方程的导出
  1. 平壁面直角边界层坐标系中的不可压N-S方程
    考虑二维定常不可压且无彻体力的情况。
    连续方程和动量方程为∂u/∂x+∂v/∂y=0u∂u/∂x+v∂u/∂y=-1/ρ∂p/∂x+v(∂^2u/∂x^2+∂u^2/∂y^2)u∂v/∂x+v∂v/∂y=-1/ρ∂p/∂y+v(∂^2v/∂x^2+∂v^2/∂y^2)
    不可压流中,连续方程和动量方程的求解可以与能量方程解耦。
  2. 量级分析
    在δ/l远小于1的前提下,对上述方程中各项进行数量级分析。一个已知的物理事实是在边界层中,黏性力和惯性力的量级相同。
    首先确定各因变量的典型值(代表其量级)。利用上述规则,并采用“~”表示具有量级精度的典型值而不考虑其符号。
    分析连续方程。方程中∂u/∂x的典型值为Ve/l,另一项∂v/∂y的典型值记为v/δ,因为两项的量级应该相同,所以可得到v的典型值为v~Veδ/l
    再分析x向动量方程,将方程中各项的典型值写到各对应位置。可见惯性力项的典型值均为Ve^2/l。黏性力两项量级不一,量级大的为vVe/δ^2。压差力项的典型值暂不分析。注意在边界层中黏性力与惯性力具有相同的量级,因此可将Ve^2/lvVe^2/δ^2的量级定为1,以其为标准来比较方程中各项量级的相对大小。可见惯性力两项均需保留,而黏性力中应保留量级较大的v∂^2u/∂y^2项,v∂^2u/∂x^2作为小量可以忽略。
    y向动量方程中惯性力和黏性力项均为x向动量方程相应项的高一阶小量。
    压力梯度是一种被动的起调节作用的力,其数量级应由方程中其他类型力(黏性力和惯性力)中的最大量级决定。因此可认为x向动量方程和y向动量方程中压力偏导数的量级分别为∂p/∂x~ρVe^2/l,相对量级为1∂p/∂y~ρVe^2δ/l^2,相对量级为δ/l
    可见,对于p来说,∂p/∂y比∂p/∂x量级低,可忽略∂p/∂y,即认为∂p/∂y=0
  3. 平壁面的二维边界层方程组
    根据以上量级分析,将上述方程中具有δ/l量级及更高阶的小量项忽略,得∂u/∂x+∂v/∂y=0u∂u/∂x+v∂u/∂y=-1/ρ∂p/∂x+v∂u^2/∂y^2∂p/∂y=0
    上式及平壁面的定常二维不可压流动的边界层方程组。
    由于∂p/∂y=0,所以可将x向动量方程中的∂p/∂x=0用dp/dx代替以强调p与y无关。并且∂p/∂y=0意味着边界层内某点的压力与同一x位置的壁面处和边界层外缘处的压力均相等,即p(x)=pw(x)=pe(x)
    pw(x)可以通过试验测得的壁面压力分布数据给出,pe(x)可由边界层外部的无黏流解给出。进一步对外部无黏流体应用伯努利方程,可得dp/dx=dpe/dx=-ρVedVe/dx
    代入上式可得u∂u/∂x+v∂u/∂y=VedVe/dx+v∂^2u/∂y^2
    也可将上式联合作为平壁面的定常二维不可压边界层方程组。
  4. 曲壁面的二维边界层方程组
    实际问题中的物面往往是弯曲的,此时也可将上述平壁面的边界层方程推广到曲壁面绕流的情况,只要壁面的曲率半径远大于边界层厚度。需要注意,对于曲壁边界层,方程中的流向坐标x是沿x向动量方程分别和平壁面情况的公式相同。当壁面的曲率半径Rc和绕流的流向尺度l属于同一量级,y向动量方程中会出现离心力的影响,即∂p/∂y=ρu^2/Rc
    不过若Rc远大于l,即物面只是微弯的,y向动量方程仍采用∂p/∂y=0。也就是说,对于微弯曲面(Rc远大于l),其边界层方程在形式上与平壁面情形相同,只是采用了边界层曲线正交坐标系。
6.4.2 边界层流动的求解
  1. 边界层方程的定解条件
    边界层方程组是关于速度分量u和v的二阶偏微分方程组,其数学性质是抛物型。
    具体各边界条件如下:
    1 . 物面不可渗透,且无滑移,有y=0处:u=0,v=0
    2 . 边界层外缘处有y=δ处:u=Ve或y→∞处:u=Ve
    上面的y=δ处u=Ve不是严格成立的,所以优势也在y→∞处提边界条件。根据边界层渐进地过渡为外部无黏流的性质,可知u在y=δ处和y→∞的值相差很少,故两种边界条件的提法没有本质差别。
    3 . 在某一初始截面上给定u的值,即x=x0截面:u=u(x0,y)
  2. 边界层流动求解步骤
    第一步,求外部无黏流解。略去边界层与尾迹,求解理想流体对物体的绕流问题,得到物体壁面上速度分布Vw(x)|无黏。因为边界层很薄,可将其视为边界层外缘的速度分布,即Ve(x)=Vw(x)|无黏
    第二步,将无黏流解的结果代入上式或作为边界条件,求解由上式构成的边界层方程组,得到边界层内的速度分布:u=u(x,y),v=v(x,y)
    第三步, 根据速度分布u=u(x,y),求得壁面切应力:τw(x)=μ∂u/∂y|y=0
    有了壁面切应力τw(x)分布后,再通过积分就可以求出物体所受的总的摩擦阻力。
    需要说明,边界层内的黏性流体运动和外部无黏流是相互影响、紧密关联的。
    首先,求解边界层方程时必须知道边界层外边界上无黏流的压力和速度分布。
    另一方面,可知无黏流所绕流的物体已不是原物体,而是加厚了δ*的等效物体。
    严格来说,需将外部无黏流和边界层流动联合起来求解。
    另外,要特别注意边界层方程的应用范围。雷诺数不够大时,δ/l较大,边界层方程的误差较大;发生流动分离后也不能再用边界层方程。
  3. 边界层方程求解方法
    与N-S方程相比,边界层方程有了很大简化。边界层方程仍是一个二阶的非线性偏微分方程组,其解析求解在数学上仍有困难。求解方法有如下三类:
    1 . 相似解
    在一些特殊的流动条件下,通过数学变换,可将偏微分方程化为常微分方程求解。这是自相似流动。
    2 . 数值解
    对一般的不满足相似条件的边界层流动,要获得详细的参数分布只能求边界层偏微分方程组的数值解。
    3 . 近似解
    工程实际问题中,需要有简便的方法能够快速估算物体表面摩擦等边界层典型参数,即求边界层方程的近似解。
6.5 边界层相似即平板边界层的相思解

流动相似是指两个不同流动具有相同的无量纲解。一些特殊的边界层流动存在“自相似”的特点,在变换的坐标系下,同一流动不同位置的解分布具有相似性,平板边界流动就是一种自相似流动。

6.5.1 边界层相似的概念

以二维定常不可压流的层流边界层方程为例,在给定运动黏度v和边界层外缘速度Ve(x)的情况下,边界层定解问题的解u和v一般应该是x和y的函数,不同x位置的速度剖面不相同,即u(x1,y)≠u(x2,y)
但均有在壁面处速度为零、在边缘层外缘处速度为Ve的特点,即u(x1,0)=0,u(x2,0)=0;u(x1,δ1)=Ve(x1),u(x2,δ2)=Ve(x2)
若以不同x位置的当地边界层厚度δ(x)对y向尺度进行无量纲化,即定义无量纲的边界层法向坐标:η=C·y/δ(x)。其中,C为一常数。
乳如果做适当的坐标变换,(x,y)→(ξ,η),对一些·特殊的流动,能使不同ξ处具有相同的无量纲速度剖面u/Ve=g(η)。即边界层的无量纲速度只是单变量η的函数。
不同位置的无量纲物理量函数相同,也就是说不同位置处的流动是相似的,这种同一流动中的相似称为自相似。变换后的自变量η是x和y的某个特定函数,称为相似函数。对于自相似的边界层流动,无量纲物理量u(x,y)/Ve(x)只是相似参数η一个单变量的函数,原来的偏微分方程可化为常微分方程求解。

6.5.2 法沃克纳-斯坎变换

边界层厚度随流向发展,在距前缘距离x位置的边界层厚度为δ(x)~x/sqrt(Rex)=x·sqrt(v/Vex)=sqrt(vx/Ve)
可将相似参数η定义为η=y·sqrt(Ve/vx)并令ξ=x
上两个式子就是法沃克纳-斯坎变换(简称F-S变换)的定义式。F-S变换是二维流动中最著名的相似变换。
采用F-S变换可将边界层方程转化为关于(ξ,η)的方程。对于满足一定条件的边界层流动,可以·分析出变换后方程的解与ξ无关,只是η的函数,方程可转化为常微分方程求解。这类流动就是那些自相似的边界层流动。例如,当Ve=Cx^m,C,m为常数且壁面处法向速度为零(无渗透)时,边界层流动就是自相似流动。
对于一般的流动,经过F-S变换后的方程仍是偏微分方程,方程的解还是自变量ξ、η的函数,但随ξ的变化缓慢,即|∂/∂ξ|η<|∂/∂x|y
对偏微分方程进行数值求解时,沿ξ向可以取较大的步长。

6.5.3 平板边界层方程的相似变换

半无穷场平板的层流边界层流动是最简单的自相似流动,采用F-S变换导出(ξ,η)平面的平板边界层方程。

  1. 物理平面的流函数方程
    设无限空间中的均匀气流以速度V∞沿板面方向定常地向一个半无穷长且厚度为零的平板流来,外部无黏流的速度为Ve(x)=V∞=const
    压力也是均匀的,此时边界方程组成为∂u/∂x+∂v/∂y=0u∂u/∂x+v∂u/∂y=v∂^2u/∂y^2
    边界条件为y=0,x≥0:u=0,v=0y=δ:u=V∞
    平面不可压流动存在流函数,引入流函数后连续方程自然满足,并且可以采用一个流函数代替两个速度分量,减少未知函数的个数。这里引入流函数Ψ:∂Ψ/∂y=u,∂Ψ/∂x=-v。将上式代入动量方程,得∂Ψ/∂y·∂^2Ψ/∂x∂y=v∂^3Ψ/∂y^3
    由于采用流函数后连续方程已自动满足,所以流函数方程就是平板边界层的控制方程,原二阶偏微分方程转化成了一个三阶偏微分方程。
  2. 变化平面的无量纲流函数方程及边界条件
    对平板边界层流动,边界层外缘速度Ve=V∞,则F-S变换定义的两个坐标系(x,y)、(ξ,η)间的变换关系成为η=y·sqrt(V∞/vx),ξ=x。还需在(ξ,η)平面定义一无量纲的流函数g(ξ,η),实现边界层流函数方程的变换。由于流函数Ψ(x,y),实现边界层流函数方程的变换。由于流函数的量纲为[速度]x[长度],所以无量纲流函数可以定义为Ψ(x,y)除以某个特殊速度与特征长度。对于边界层流动,最具代表的速度和长度就是边界层外缘速度Ve和边界层厚度δ,而层流边界层中δ~x/sqrt(Rex)=sqrt(vx/Ve),因此可将无量纲流函数g(ξ,η)与Ψ(x,y)之间的关系定义为Ψ(x,y)=sqrt(V∞vx)f(η)
    由上式,根据符复合函数微分法则,就可将速度u,v和流函数Ψ(x,y)方程中Ψ的各阶偏导数用f(η)或其导数表示,最后将流函数Ψ(x,y)方程变换为无量纲流函数f(η)的方程。
    无量纲流函数f(η)满足的常微分方程2f'''+f·f''=0,也称为布拉休斯方程。
    根据壁面、边界层外缘处的速度边界条件与变换关系是,可得到f’的边界条件。由固壁边界上的无滑移、无渗透条件,即y=0时,u=0,v=0,有η=0时:f'(0)=0,f(0)=0
    由y=δ时,u=Ve=V∞,有η=η∞时:f'(η)∞=1
    式中,η∞对应于变换后的边界层外援坐标。布拉休斯方程是三阶常微分方程。
6.5.4 平板边界层的布拉休斯解

由于方程的非线性,布拉休斯方程至今未得到严格的解析解。最初布拉休斯用技术展开求解,后来一些学者用龙格库塔法求得了数值解

  1. 布拉休斯级数解
    布拉休斯假设f(η)=A0+A1η+A2/2!·η^2+···+An/n!·η^n+···,式中,Ai为待定常数。将该技术代入方程和边界条件可推出数值表。
  2. 平板切应力、摩擦即摩阻系数
    可由f’'(η)计算∂u/∂y,并得到平板壁面切应力:τw(x)=0.332μV∞·sqrt(V∞/vx)
    当地的表面摩阻系数为Cf=0.664/sqrt(Rex)
    式中,Rex为以当地x坐标作为特征长度定义的雷诺数Rex=V∞x/v称为当地雷诺数。
    将当地壁面切应力沿流向积分,即可得长度为L\单位宽度平板上所受的总摩擦阻力Df=0.664sqrt(μρLV∞^3)
    式中,L为从平板前缘算起的长度。由此可算出平板的平均摩擦阻力系数:CD,f=1.328/sqrt(ReL)
    式中,ReL为采用平板长度定义的雷诺数。可见摩擦阻力系数CD,f与ReL的平方根成反比。
  3. 平板边界层厚度
    根据f(η)、f’(η)、f’'(η)值,可以计算出平板边界层的各种厚度。
    1 . 边界层名义厚度为δ995=5.3sqrt(vx/V∞)=5.3x/sqrt(Rex)
    可见δ(x)是按与sqrt(x)成正比的关系随x增大。
    2 . 位移厚度为δ*=1.72x/sqrt(Rex)
    3 . 动量亏损厚度为θ=0.664x/sqrt(Rex)
6.6 动量积分方程及平板边界层的近似解

动量积分方程是一种计算量较小,工程中广泛采用的边界层方程近似解法,动量积分方程法使用于一般的边界层流动,不要求流动相似。

6.6.1 卡门动量几份方程
  1. 动量积分方程的导出
    将定常二维不可压边界层方程组改写如下:∂u/∂x+∂v/∂y=0u∂u/∂x+v∂u/∂y=-1/ρ∂p/∂x+v∂u^2/∂y^2∂p/∂y=0
    经代入、整理得到定常二维不可压流的边界层动量积分方程d(Ve^2θ)/dx+Ve·dVe/dx·δ*=τw/ρ(可以通过动量定理导出),也称卡门动量积分方程或卡门动量积分关系式。
  2. 动量积分方程的解法
    因导出过程未引入任何假设,所以方程的精度没变。但动量积分方程中含有三个未知量,只能将动量积分方程法归于近似解法。该近似解法并不要求边界层内每一点都满足边界层方程(原偏微分方程组),而是只要在积分意义上满足边界层方程(动量积分方程)。
    给定边界层的速度分布:u/Ve=φ(y/δ)
    动量积分方程就只是一个未知量δ的常微分方程,很容易求解。
    动量积分方程法的近似精度,依赖假定的速度分布式和实际速度分布之间的符合情况。在选取速度剖面时,首先要满足严格规定的边界条件,此外还要尽可能反映真实速度剖面的主要特性,亦即边界处的各处导数。
    在不可渗透壁面上,首先要满足无滑移条件,即y=0:u=0,v=0
    一阶导数为∂u/∂y|y=0=τw/μ(未知)
    二阶导数可根据边界层的动量方程及无滑移条件得∂^2u/∂y^2|y=0=-Ve/v·dVe/dx
    还可将上式对y微分,并联合连续方程进一步得∂^3u/∂y^3|y=0
    在边界层外边缘上,黏性流与外部无黏流衔接,它们的速度函数和各阶导数都相等,则y=δ:u=Ve,∂^nu/∂y^n|y=0,n=1,2,3···
    在上述边界条件中,y=0:u=0,v=0y=δ:u=Ve,∂^nu/∂y^n|y=0,n=1,2,3···是必须满足的严格边界条件。此外,越靠前的低阶导数条件,应该首先满足。如果选定的速度剖面满足上式中的主要边界条件,就表明它在物体壁面和边界层外缘附近都和真实的速度分布接近。
6.6.2 平板边界层的动量积分方程解法

以最简单的平板边界层为例,介绍动量积分方程的求解。对于平板,边界层外缘速度Ve(x)=V∞,dVe/dx=0,动量积分方程为dθ/dx=τw/ρV∞^2
式中,动量亏损厚度θ和壁面切应力τw都是未知函数。

  1. 假设速度分布剖面
    通常可采用多项式近似的速度分布。例如,假设速度剖面为u/V∞=A0+A1·y/δ+A2(y/δ)^2+A3(y/δ)^3
    上式中,含4个待定系数,首先需要满足严格规定的边界条件式,另外选取壁面处的二阶偏导数条件式和外缘处式中的一阶偏导数。由这4个边界条件分别为A0=0,A1=3/2,A2=0,A3=-1/2
    于是,速度分布成为u/V∞=3/2·y/δ-1/2·(y/δ)^3
    在上述速度分布下,动量亏损厚度为θ=39δ/280
    表面切应力为τw=3/2·μ·V∞/δ
    可见动量积分方程中的θ和τw都已由边界层位移厚度δ表示。
  2. 动量积分方程求解
    常微分方程:13/140δdδ=μ/ρV∞·dx,边界条件为x=0:δ=0
    积分式后得δ(x)=4.64x/sqrt(Rex),该结果与布拉休斯精确解结果相差不大。
    作用在单位宽度、长度为L的单面平板上的摩擦力为Df=1.296/sqrt(ReL)·1/2·ρV∞^2L
    则平板的摩阻系数为CD,f=Df/1/2·ρV∞^2L=1.296/sqrt(ReL),可见平板的摩阻系数也与布拉休斯解相差不大。
    和布拉休斯解比较,动量积分方程方法一般来说能给出令人满意的结果。
6.7 边界层分离

当流体绕非流线型物体流动时,边界层会从物面分离出来,在后面形成尾涡区,从而产生很大的旋涡阻力。

6.7.1 圆柱绕流的分离过程及物理解释

以圆柱这样的非流线型物体绕流为例说明边界层分离现象发生的原因。对于理想流体,微团在OM段加速降压,部分压力势能转变为动能,在MF段经历相反过程。OM段和MF段对应点上压力相等。
对于实际黏性流体,可以将流动分为物面附近的边界层流动和边界层外的无黏势流。在OM段,边界层外流动仍然是加速降压流动。在MF段,边界层外是减速增压流动,外部势流的压力梯度为dpe/dx。前已知,边界层内的压力与同一流向位置的外缘处压力接近相等,因而可以用dpe/dx代表在同一x位置的边界层内的流体所承受的流向压力梯度。也就是说,有OM段:dp/dx<0(顺压力梯度);MF段:dp/dx>0(逆压力梯度)
由于黏性耗散,边界层内底层流体的动能在流动过程中不断消耗,在圆柱体后部MF段中,流体剩余的动能已不足以克服迎面的高压(逆压梯度),流体走不多远。到S点(分离点)就停下来。分离点后的物面上的压力比加速段对应点的压力低,因而产生大的压差阻力。

6.7.2 逆压力梯度与速度剖面的关系

以一曲面上边界层流动为例。根据层流边界层动量方程,在物面上(u=0,v=0)有μ·∂^2u/∂y^2|y=0=dp/dx
∂^2u/∂y^2|y=0是速度剖面在壁面处的曲率,它和压力梯度dp/dx成正比,与dp/dx同号。而到了边界层外缘附近,总有∂^2u/∂y^2<0,因为从边界层内向外∂u/∂y是不断减小的,直到外缘处为零。
根据边界层流向压力梯度dp/dx可将边界层内的流动分成三种情况:

  1. 顺压力梯度区,dp/dx<0。压力梯度推动质点加速作用强于物面和流体的黏性滞止作用,整个边界层内的质点沿正x方向(主流方向)运动,速度剖面是一条没有拐点的向下游凸出的光滑曲线。
  2. 压力极小值区,dp/dx=0。外部无黏流速度的极大值点,边界层速度剖面在壁面上形成一个拐点,速度剖面保持为凸的。
  3. 逆压力梯度区,dp/dx>0,边界层内部出现拐点。在逆压梯度的起始阶段,壁面附近的流体质点还能保持沿正x向运动,仍有壁面附近速度剖面的形状出现内凹。若沿流动方向压力继续增大,逆压力梯度和壁面摩擦都使质点进一步减速,有可能产生S点。S点就是分离点,物面上切应力为零的点,紧邻壁面的顺流和倒流流体的分界点。
    普朗特将∂u/∂y|y=δ=0作为二维定常绕流边界流动分离的判据,并推断出分离只能在逆压梯度区发生。
6.7.3 分离发生的必要条件

边界层分离是逆压力梯度和壁面附近黏性阻滞共同作用的结果,两个因素缺一不可。如果只有壁面的黏性阻滞而没有逆压,不会发生分离,因而没有反推力,流体不会倒流。另一方面,如果只有逆压梯度而没有壁面附近的黏性阻滞作用,也不会发生分离。
当流体流经管道转角时,弯曲部分沿垂直于流动方向向外压强增大,于是沿外壁的流速下降,且流动分离;再往下游,转角引起的恶压强变化消失,沿外壁的流速增加,外壁附近的流动重新附着于管壁。内壁附近边界层内流体则是在流过转角后因增压减速而分离。类似的流动分离在管道截面突然收缩的前方也会形成。例如当气流流过房屋时,流动分离会出现在房屋上游的地面和后面的为刘忠。喝水流过桥墩时也会发生类似的流动分离。展示了逆压梯度和壁面黏性阻滞的共同作用导致分离的现象。
还应当指出,逆压梯度和壁面黏性阻滞着两个要素只是边界分离的必要而非充分条件。是否发生分离还要看逆压梯度的大小。
影响分离的另一个重要因素是流态,由于湍流具有很强的动量交换能力,能比层流边界层承受更大的逆压梯度而不易发生分离。雷诺数较大时(对应于湍流)圆柱背流面分离区较小。

6.8 湍流的雷诺方程和相关概念
6.8.1 湍流平均运动及平均运算

湍流运动状态下,流体的速度、压力等随时间和空间的变化表现出很不顺利、很不光滑的高频脉动。
因为准确描写湍流运动随时间和空间的变化是不现实的,所以雷诺首先转而研究湍流的平均运动,即将变量q分解为平均量和脉动量的和:q=q-+q'。确定平均量的办法有时间平均、空间平均和概率平均。下面讨论时间平均。
设变量q是空间点r和时间t的函数,则点r处变量q的时间平均可定义如下:q-(r,T,t0)=1/T·∫(t0-T/2→t0+T/2)[q(r,t)]dt
时间间隔T的选取应该满足条件:TA远大于T远大于TF
上式中,TA为平均运动状态发生变化的典型时间长度,TF为最低频率的脉动运动的周期。
当湍流的平均特性不再随时间变化时,称为统计定常的湍流。
对于统计定常的湍流,脉动量的平均值等于零。
本节以不可压湍流为例,讨论湍流的平均运动。将瞬时速度分解为平均速度和脉动速度之和,即u=U+u',v=V+v',w=W+w'
将瞬时压力分解为平均值与脉动值之和,即p=P+p'

6.8.2 不可压湍流平均运动的质量方程和动量方程
  1. 质量方程
    不可压连续方程为∂u/∂x+∂v/∂y+∂w/∂z=0。这是层流、湍流都适用的方程。对于湍流,可将瞬时速度用平均速度和脉动速度的和代入,得到(∂U/∂x+∂u'/∂x)+(∂V/∂y+∂v'/∂y+(∂W/∂z+∂w'/∂z)
    对上式取平均,应用脉动量的平均运算的关系式,进一步得∂U/∂x+∂V/∂y+∂W/∂z
    上式就是不可压湍流的平均运动所满足的质量方程。
  2. 动量方程(雷诺方程)的导出
    以x向动量方程为代表为代表来推导湍流平均运动的动量方程。略去彻体力后,不可压流的x向N-S方程可以写为∂u/∂t+u∂u/∂x+v∂u/∂y+w∂u/∂z=-1/ρ·∂ρ/∂x+v▽^2u
    上式的不可压黏性流体运动满足的动量方程。湍流运动中的瞬时速度、瞬时压力等也是满足该方程。该方程中将湍流运动的瞬时速度用平均速度和脉动速度的和表示,就可以得到湍流平均运动的动量方程。
    由不可压流的连续方程可得u∂u/∂x+u∂v/∂y+∂w/∂z=0
    湍流平均运动的x方向的动量方程∂u/∂t+U∂U/∂x+V∂U/∂y+W∂U/∂z=-1/ρ·∂P/∂x+v▽^2U+1/ρ[∂(-ρu'v')/∂x+∂(-ρV'^2)/∂y+∂(ρu'w')/∂x]。上式也称雷诺平均的N-S方程,也就是通常所说的雷诺方程。
  3. 雷诺应力
    和对应的真实流动(瞬时量)的动量比较,湍流平均运动的动量方程中多了最后一大项,它是由真实流动瞬时速度的非线性惯性项产生的,可以改写成张量的形式,具有应力的量纲,所以称为雷诺应力。
    从这个意义上说,湍流平均运动的微团表面上,除压力外还受到两种表面力作用,即分子黏性应力和雷诺应力。多数情况下和绝大多数流动空间内,雷诺应力比分子黏性应力大得多。其实当雷诺应力比分子黏性应力大得多时,分子黏性应力就可以忽略了。
  4. 方程的封闭性
    可见按照雷诺将瞬时运动分解为平均运动和脉动运动之和的办法,确实可以把平均运动从瞬时运动中分离出来,或者说把脉动运动对平均运动的影响分离出来。但这种分解也引起了新的问题,即方程组的封闭性问题。原来封闭的方程不再封闭。
    需要在雷诺应力和平均速度之间建立补充关系式。一是湍流的统计理论,二是湍流的半经验理论。
6.8.3 雷诺应力的物理意义及混合长度理论
  1. 雷诺应力的物理意义
    设平均运动是二维的。由于旋涡运动,高速流层中的微团会向下跳到低速流层中,低速流层中的微团也会向上跳到高速流层中。当高速流层的微团跳入低速流层中,它并未立即失去原有速度,超出当地平均速度的部分即脉动速度u’。单位时间内流入该微元体的x向动量的净流入率为|ρv'|u'dxdz。根据动量定理,动量流入率等于表面作用力,即相当于微元面dxdz上受到了作用力|ρv'|u'dxdz,因而应力的大小为|ρu'v'|
    实际上u’和v’都是变化的,虽然有两者同时大于零或小于零的情况,但对于微团由高速层跳入低速层,通常为v'<0,u'>0,由低速层跳入高速层时,通常为v'>0,u'<0,取平均后通常有u'v'-<0,所以∂U/∂y>0时,-ρu'v'->0
    或者说,雷诺应力-ρu’v’-与∂U/∂y同号。雷诺应力与黏性应力有本质的区别。黏性应力对应于分子随机运动引起的界面两侧的动量交换,雷诺应力对应于流体微团跳动引起的界面两侧的动量交换。微团的跳动是由大大小小的旋涡引起的。所以,雷诺应力并不是严格意义上的表面应力,是对真实的脉动愚弄进行平均处理时,将脉动引起的动量交换折算为在想象的平均运动微团界面上的力。不过对于平均运动,雷诺应力具有表面力的效果。
  2. 雷诺应力与平均形变关系——涡黏性系数
    分子黏度与切应力具有以下关系:τl=μ∂u/∂y=ρv∂u/∂u
    上式中,下标l代表层流。布森涅斯克最早建议用一种假想的涡黏度,根据平均速度计算湍流应力(即后来通称的雷诺应力):τl=-ρu'v'-=ρεm·∂U/∂y=μt·∂U/∂y
    上式中,下标l代表层流。εm称为涡黏度,与分子运动黏度v=μ/ρ有相同的量纲。
    需要指出,涡黏度εm(或μl)与分子黏度v(或μ)有本质区别:v是流体本身的性质,而涡黏度并非流体的物理性质,是湍流的一种流动特性(层流时εm=0),取决于湍流的平均流速场和集合边界条件。对于不同的流动,甚至是同一流动中的不同位置,涡黏度均不相同。
  3. 普朗特混合长度理论
    普朗特混合长度理论是最初处理雷诺应力的理论。仍以湍流的脉动运动为例。
    由于湍流旋涡作用,流体微团将上下跳动。由于微团的流向速度不会立即改变,到达新位置后它会低于当地周围的平均速度,此即流向脉动速度:u'=U(y1)-U(y0)
    显然此速度差取决于当地的平均速度梯度与微团y向跳动的距离l,即u'=l∂U/∂y
    此l即为混合长度,它表示这样的距离,在此距离内微团沿y向跳动时基本不会丧失其原有速度,而在移动距离l后,微团便与其他流体微团相混合,改变了原有的流速。
    单位时间内进入单位面积y=y0界面的质量为|ρv'|。实际测量表明,流向脉动速度和横向脉动速度有相同量级,即可设|u'|≈|v'|,因此有|v'|≈lc
    结合上文,有-ρu'v'-=ρl^2|∂U/∂y|∂U/∂y
    这就是按混合长度理论计算雷诺应力的公式。
    由此可算出涡黏度为εm=l^2εm
    由上式可见,若假设l不随速度变化,则可得出雷诺应力与平均速度平方成比例的结论。
    实际上,混合长度l仍是与流动有关的未知量,不过基本上是当地状态的函数。
    对于二维壁面剪切湍流,混合长度l有以下经验公式:
    1 . 非常靠近壁面区:l~y^2
    2 . 适度靠近壁面区:l~κy,κ=0.4~0.41
    3 . 远离壁面区:l≈0.075~0.09δ,δ为边界层厚度
6.8.4 平板湍流边界层流动特性介绍

采用湍流模型解决封闭性问题时,就可以数值求解或近似求解雷诺方程,得到湍流状态下的流动特性。这里简要介绍平板湍流边界层的流动特性,并给出近似解的典型结果。

  1. 层流和湍流边界层速度剖面特点
    考虑流过光滑平板的不可压流动。若雷诺数足够高,则平板上方存在三种不同的流动区域。从前缘开始,第一个区域(0<Rex<rextr)是层流或具有小振幅不稳定波的层流,越向下流,层次路边界层越厚;第二个区域(Rextr<Rex<Rext)以湍流斑点首先出现的xtr处为起点,以完成从层流到湍流的完全转变处xt为终点;第三个区域(Rex>Rext)内流动是完全的湍流,湍流边界层比层流边界层厚得多。
    湍流速度剖面相比层流速度剖面更饱满,这是湍流中横向脉动运动引起的掺混输运所致。紧贴壁面处,湍流速度比层流大得多,有(∂U/∂y|y=0)湍流>(∂u/∂y|y=0)层流
    在管道流动中也有这个特点。因此湍流壁面摩阻比层流高得多。不过,由于湍流状态下壁面附近流体的动能更大,湍流边界层的抗分离能力比层流强。
  2. 平板湍流边界层特性估算结果
    通过对平板湍流边界层微分方程沿边界层厚度方向积分,可以导出与层流边界层形成完全相同的动量积分方程:dθ/dx=Cf/2
    只是计算式中的动量亏损厚度和摩阻使将层流情况的速度改为湍流运动的平均速度即可。引入湍流边界层平均速度分布关系式后,即可求解动量积分方程得到近似解。基于速度剖面的指数律假设式和壁面切应力的布拉休斯经验关系式的方法介绍如下:
    架设速度分布式为U/V∞=(y/δ)^(1/n)
    n为常数,通常取为7。根据位移厚度δ*和动量厚度θ的关系式δ*/δ=1/n+1=1/8θ/δ=n/(n+1)(n+2)=7/72
    壁面摩阻也可以由布拉休斯得到的关于光滑圆管湍流的经验关系式导出:Cf/2=0.0225(v/V∞δ)^1/4
    将θ/δ=7/72代入动量积分方程,得7/72·dδ/dx=0.0225(v/V∞δ)^1/4
    上式为边界层厚度δ(x)的微分方程。假定从平板前缘开始即为湍流边界层,当x=0时,δ=0,积分此式得δ/x=0.37/Rex^(1/5)
    从而得θ/x=0.036/Rex^(1/5)Cf=0.059/Rex^(1/5)
    进一步对Cf积分求得长度为L、单位宽度平板的平均摩擦阻力系数CD,f=0.074/ReL^(1/5)
    由上式可见,边界层的各种厚度比层流边界层厚度增长速度快得多。
  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
R语言实战笔记第九章介绍了方差分析的内容。方差分析是一种用于比较两个或多个组之间差异的统计方法。在R语言中,可以使用lm函数进行方差分析的回归拟合。lm函数的基本用法是: myfit <- lm(I(Y^(a))~x I(x^2) I(log(x)) var ... [-1],data=dataframe 其中,Y代表因变量,x代表自变量,a代表指数,var代表其他可能对模型有影响的变量。lm函数可以拟合回归模型并提供相关分析结果。 在方差分析中,还需要进行数据诊断,以确保模型的可靠性。其中几个重要的诊断包括异常观测值、离群点和高杠杆值点。异常观测值对于回归分析来说非常重要,可以通过Q-Q图和outlierTest函数来检测。离群点在Q-Q图中表示落在置信区间之外的点,需要删除后重新拟合并再次进行显著性检验。高杠杆值点是指在自变量因子空间中的离群点,可以通过帽子统计量来识别。一般来说,帽子统计量高于均值的2到3倍即可标记为高杠杆值点。 此外,方差分析还需要关注正态性。可以使用car包的qqplot函数绘制Q-Q图,并通过线的位置来判断数据是否服从正态分布。落在置信区间内为优,落在置信区间之外为异常点,需要进行处理。还可以通过绘制学生化残差的直方图和密度图来评估正态性。 综上所述,R语言实战第九章介绍了方差分析及其相关的数据诊断方法,包括异常观测值、离群点、高杠杆值点和正态性检验。这些方法可以用于分析数据的可靠性和模型的适应性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [R语言实战笔记--第八章 OLS回归分析](https://blog.csdn.net/gdyflxw/article/details/53870535)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【执珪】瑕瑜·夕环玦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值