第六章 黏性不可压流动与边界层
6.1 黏性流体运动特点
首先通过两个流动例子观察黏性流动与无黏流动的差别,分析黏性对流动的影响。然后介绍黏性流体运动的两种不同形态:层流与湍流。
观察流过无厚度平板的直匀流动。当理想流体沿平行于平板方向流过时,在平板表面流体质点滑过平板,但不能穿过平板(通常称作不渗透条件)。平板对流动无阻滞作用,阻力为零。黏性流体流过时,紧贴平板表面的流体质点黏附在平板上,与平板表面不存在相对运动,也就是说,在边界面上流体质点必须满足无滑移条件。随着离开平板距离的增大,流体速度由壁面处的零值迅速增大到来流的速度。这样在贴近平板的区域流动速度梯度很大,流体层之间的黏性切应力不能忽略,此区域称为边界层区。平板对流动起阻滞作用,平板阻力不为零。
考察圆柱绕流,理想流体圆柱绕流时圆柱表面上法向速度为零,但周向速度除前后驻点均不为零,即无渗透但有滑移。另外流速上下、前后都是对称的,相应地,压强分布也是上下、前后均对称的。因此在圆柱所受的流体压强的合力在x,y方向均为零,在流动方向没有阻力,是达朗贝尔谬论的一个例子。实际流体的压强分布上下是对称的,但前后不再对称。并且随着雷诺数的不同,绕流压强分布也不同。但它们与理想流动有一个共同区别:黏性流动中圆柱体的背流面压强系数为复数。背流面压强小于迎流面压强,使圆柱受到流体向后的作用力,即压差阻力。
流体在圆柱后部处于减速增压的流动阶段,但由于黏性摩擦,壁面附近边界层内流体的动能在流动过程中不断消耗,流体剩余的动能已不足以克服迎面的高压,到s点就停滞下来。后面更高的压力使微团向相反的方向运动,形成倒流,使上游来的流体边界层与固体壁面脱离,这种现象称为边界层分离。流体分离后,静压不易再有较大回升,并在其后形成宽的尾迹。分离点的位置和尾迹流的宽度和特性取决于雷诺数Re的值。雷诺数较小时对应层流,流体容易分离;雷诺数较大时对应于湍流,流体不易分离。所以雷诺数较低时圆柱背流面低压区范围更广。
黏性摩擦应力与物面的1黏附条件(无滑移条件)是实际黏性流动区别于理想流体运动的主要标志。黏性存在是产生阻力的原因,摩擦阻力、压差阻力本质上起因于黏性。在解决运动流体的阻力、流动分离等问题中,黏性作用已占主导地位,不能再忽略。
6.1.2 黏性流体流动的两种状态
黏性流体的运动存在两种不同的流动型态(流态):层流与湍流,湍流也称紊流。
- 雷诺圆管试验
在管径d和流体运动黏度v都不变的情况下改变流速,发现流态与后来称为雷诺数的无量纲参数(Re=U0d/v)有关,其中U0为管道横截面的平均流速。
Re<2000时,染色的流丝几乎完全是一条清晰的直流线,说明管中的水流是稳定的沿轴向平行运动,相邻薄层的流速各不相同,但各层间并无宏观的掺混现象,这样的流态称为层流。当速度增大,染色的流丝在下游破碎,迅速与周围流体掺混而时整个流体染上颜色。混合得很好的区域是湍流。此时的流体仍可分辨出一簇簇清晰的卷曲流丝。
流动从层流演变为湍流的现象与过程称为转捩。从层流转变为湍流的Re大小和许多因素有关。雷诺数在临界雷诺数以下时,即使存在对水流的强烈扰动,扰动也将由于流体的黏性而衰减,流动继续保持层流状态。
Re增大后流动由层流过渡到湍流的现象不仅在圆管流动中存在,在其他流动(如边界层、自由剪切层流动)中也能观察到。Re表征流体运动时微团所受的惯性力与黏性力典型值之比。Re较小时表明流体惯性力相对较小、黏性作用相对较强,此时由于黏性力的束缚使流体运动比较规则而呈现出层流状态;Re较大时则说明流体微团的惯性作用较大、黏性作用较弱,流体容易突破黏性力的束缚,发生不规则的脉动,呈现出湍流状态。不同流动中流动过渡过程的形态相差很大,有各自不同的特点。 - 层流与湍流的主要特征
当流体作层流流动时,各流体质点的迹线是光滑而规则的,无宏观掺混。相反,湍流中流体的运动是不规则的、弯曲的,沿主流方向与横向(与主流垂直)均有宏观掺混。
层流是很光滑的流动,即流体的速度、压力等参数随时间和空间的变化都很平滑;
湍流是很不规则的流动,即流体的速度、压力等随时间和空间都以很不规则、不光滑的方式变化,湍流是紊乱的和混乱的,也称为紊流。
黏性流体相邻两流层之间会发生动量·、能量和质量等宏观物理量的输运。湍流对动量、能量和质量的输运能力比层流大得多。
层流和湍流都服从黏性流体运动的基本方程组——纳维-斯托克斯方程组。
光滑和规则的层流表现确定性,符合N-S方程在给定初始和边界条件下的确定性解。脉动和紊乱的湍流表现随机性(高雷诺数时对初始条件及其敏感)。
层流和湍流是黏性流体运动中两种不同的稳定状态。层流在雷诺数较低的状况下出现,自然界和工程实践中经常发生的是湍流。
6.1.3 N-S方程组的求解
由于层流运动宏观上的规则性和确定性,可以直接从N-S方程组出发通过求解方程求解流程。对于不可压流,不需要耦合能量方程求解,完整的微分方程为:ρ·∂V/∂t+ρ(V·▽)V
,▽·V=0
。
这是一飞线性二阶偏微分方程组,由于实际问题的边界条件比较复杂,一般情况下该方程难于求解。流体力学中解决上述非线性方程组通常有以下两种途径。
- 准确解
一些简单问题中,非线性的惯性项等于零或呈现出非常简单的形式,这时方程组或者化为线性的,或者化为简单的非线性方程组,可以解出准确解来。 - 近似解
根据问题的物理特点,略去方程中某些次要项,从而得出近似方程。
6.2 N-S方程层流解析解举例
最简单的黏性流动就是不可压缩流体的平行流动。这种流动只有一个速度分量不为零,所有的流体微团沿同一方向运动。
6.2.1 不可压平行流的控制方程
取直角坐标系,并把运动方向取作x轴方向,则只有流速u≠0。再根据不可压流的连续方程▽·V=0立即得到∂u/∂x=0,即运动速度u不随x变化。所以对于不可压平行流,有u=u(y,z,t),v=0,w=0
。
对气体,通常可略去彻体力项。有∂p/∂y=0
,∂p/∂z=0
。
压力只是坐标x和时间t的函数,p=p(x,t)。非线性的惯性项为零,得到ρ·∂u/∂t=-∂p/∂x+μ(∂^2u/∂y^2+∂^2u/∂z^2)
。
上式就是不可压平行流动的控制方程,给定初始和边界条件后求解该方程即可确定流场的速度分布。
二维泊肃叶流动、库埃特流动和充分发展的管流都可以看成这种平行流动的实际粒子。
6.2.2 库埃特流动
设有两无限宽的平板平行放置,相距2h。上板以速度U匀速向右运动,下板不动。取x轴平行于板的运动方向且位于量板间距中分线,y轴垂直于版面,z轴沿平板宽度方向(垂直纸面向外)。流动是定常的。
- 方程及求解
因流动定常,速度与t无关;又因平板无限宽,所以速度在z方向的变化率为零。从而u=u(y),控制方程为μ·d^2u/dy^2=dp/dx
,边界条件为y=-h:u=0;y=h,u=U
。
由于p只是x的函数,u只是y的函数,只要上方程有解,dp/dx只能为常数。也就是说,只有dp/dx为常数的情况,才可能出现这样的二维定常平行流动。将上式对y积分,再由边界条件定出积分常数,得到速度分布为u=U/2(1+y/h)+h^2/2μ·(-dp/dx·[1-(y/h)^2]
。 - 两类特殊流动情况
当上板的速度U=0,就是二维泊肃叶流动,即两静止平行平板间的定常二维流。此时速度分布为u=umax[1-(y/h)^2]
。
可见速度剖面为抛物线。等式右端的负号说明速度指向压力降低的方向。式中,umax为最大速度,位于中线x轴。
当压力梯度为零时,有u=U/2·(1+y/h)
这种特殊情况为简单库埃特流动,即流体完全是由运动的壁面通过黏性力而拖动。 - 压力梯度的影响
一般的库埃特流动是简单库埃特流动和二维泊肃叶流动的叠加,其中泊肃叶流动反映的是压力梯度的影响。定义如下的无量纲压力梯度:B=h^2/μU·(-dp/dx)
来分析压力梯度的影响。
对于B>0,即压力沿流动方向下降,称为顺压梯度,在整个流动中速度为正。当B足够大时,即压力梯度影响远远超过上板速度影响时,流动接近泊肃叶流。当B<0,即压力沿流动方向增加时,称为逆压梯度。当B小于某个负值后,靠近静止壁面的某些区域内速度为负,即出现逆流。开始出现逆流的条件为du/dy|y=-h=0
。对应于dp/dx=μU/2h^2,B=-1/2
,而当B<-1/2,dp/dx>μU/2h^2,du/dy|y=-h<0。说明这时上面速度较大的流层对静止壁面附近流层的拖动力不足以克服逆压力梯度,因此出现逆流。
6.2.3 哈根-泊肃叶流动
哈根-泊肃叶流动是直圆管中的平行流动。对于等截面管流动,流体自大空间进入管道后,在管道进口有相当长一段距离流场受进口的影响,沿长度方向流动会逐渐变化。经过一段长度后,进口的影响逐渐消失,流动达到稳定。进口附近的流动变化段称为管道流的起始段,起始段附近的流动称为充分发展的管道流。哈根-泊肃叶流动是充分发展的定常管流,并且以管道直径为特征长度、截面平均速度为特征速度的雷诺数低于临界雷诺数,以保证流动为层流。
管道流动中常需要考虑彻体力。可引入函数P,将动量方程中的彻体力项和压力梯度项合并。令▽P=▽p-ρf
。
此时动量方程类似不计彻体力的方程,为μ(∂^2u/∂y^2+∂^2u/∂z^2)=dP/dx=const
。
对哈根-泊肃叶流动,由于问题的轴对称性,采用柱坐标系(r,θ,x)。以管道中心线为x轴,径向和周向速度为零,轴向速度u只随径向位置r变化。
柱坐标系下的动量方程为μ(d^2u/dr^2+1/r·du/dr)=dP/dx=const
。
边界条件为r=r0:u=0;r=0:du/dr=0
。
- 速度分布
将方程改写为μ·1/r·d/dr·(rdu/dr)=dP/dx
ÿ