hyper运算符_超运算

一般化

超运算等级推广至实数的可能结果,当F

n

(

3

,

3

)

{\displaystyle F_{n}(3,3)}

的n为实数时。[来源请求]

在取不同的初始条件或不同的递归法则时,就会产生不同的运算。一些数学家扩展出了超运算的许多变体。

通常,超运算等级(hyperoperation hierarchy)(

S

,

I

,

F

)

{\displaystyle (S,\,I,\,F)}

是一个以集合I

{\displaystyle I}

为索引集、基于集合S

{\displaystyle S}

的二元运算族(

F

n

)

n

I

{\displaystyle (F_{n})_{n\in I}}

。对于i

,

j

,

k

I

{\displaystyle i,j,k\in I}

,有:

F

i

(

a

,

b

)

=

a

+

b

{\displaystyle F_{i}(a,b)=a+b}

(加法)

F

j

(

a

,

b

)

=

a

b

{\displaystyle F_{j}(a,b)=ab}

(乘法)

F

k

(

a

,

b

)

=

a

b

{\displaystyle F_{k}(a,b)=a^{b}}

(幂)

如果不满足最后一个条件的话,就能将交换超运算包括在内。当然,也可以明确地定义每一个超运算,但这就超出了我们讨论的范围。大多数的变体形式只包含了对于后继函数(即加法)的定义,而乘法则由递归法则来进行定义。由于这属于对超运算等级的定义,而非等级本身的性质,很难给出形式上的定义。

对于超运算,除了古德斯坦给出的定义外,还有很多其他可能性。如果对F

n

(

a

,

0

)

{\displaystyle F_{n}(a,0)}

和F

n

(

a

,

1

)

{\displaystyle F_{n}(a,1)}

采用不同的初始条件,则产生的超运算在比幂运算更高阶时就会有不同的结果。现今的超运算定义的条件包括对所有n

3

{\displaystyle n\geq 3}

有F

n

(

a

,

0

)

=

1

{\displaystyle F_{n}(a,0)=1}

,而在其他形式中也有F

n

(

a

,

0

)

=

a

{\displaystyle F_{n}(a,0)=a}

或F

n

(

a

,

0

)

=

0

{\displaystyle F_{n}(a,0)=0}

的情况。

关于超运算的一个未解决问题是超运算等级(

N

,

N

,

F

)

{\displaystyle (\mathbb {N} ,\mathbb {N} ,F)}

是否能推广到(

C

,

C

,

F

)

{\displaystyle (\mathbb {C} ,\mathbb {C} ,F)}

,以及(

C

,

F

n

)

{\displaystyle (\mathbb {C} ,F_{n})}

是否能成为一个拟群。

从a开始的变体形式

1928年,威廉·阿克曼提出了一个三自变量的函数ϕ

(

a

,

b

,

n

)

{\displaystyle \phi (a,b,n)}

,后来发展为现有的两个自变量的阿克曼函数。初始的阿克曼函数与现在的超运算之间的区别更大,因为他当时使用了初始条件:对所有n

>

2

{\displaystyle n>2}

,有ϕ

(

a

,

0

,

n

)

=

a

{\displaystyle \phi (a,0,n)=a}

。另外他还将n

=

0

{\displaystyle n=0}

指定为加法、n

=

1

{\displaystyle n=1}

为乘法、n

=

2

{\displaystyle n=2}

为幂。因而,幂运算及更高阶的运算就有了完全不同的结果。

n

运算

注释

0

F

0

(

a

,

b

)

=

a

+

b

{\displaystyle F_{0}(a,b)=a+b}

1

F

1

(

a

,

b

)

=

a

b

{\displaystyle F_{1}(a,b)=ab}

2

F

2

(

a

,

b

)

=

a

b

{\displaystyle F_{2}(a,b)=a^{b}}

3

F

3

(

a

,

b

)

=

a

[

4

]

(

b

+

1

)

{\displaystyle F_{3}(a,b)=a[4](b+1)}

类似超-4运算,但其迭代函数比普通超-4运算更为复杂

4

F

4

(

a

,

b

)

=

(

x

a

[

4

]

(

x

+

1

)

)

b

(

a

)

{\displaystyle F_{4}(a,b)=(x\mapsto a[4](x+1))^{b}(a)}

不要与超-5运算相混淆

路莎·彼得(Rózsa Péter)还曾用A

(

0

,

b

)

=

2

b

+

1

{\displaystyle A(0,b)=2b+1}

作初始条件,但无法形成一个超运算等级。

从0开始的变体形式

1984年,C.W.克莱恩肖(C. W. Clenshaw)和F.W.J.奥立弗(F. W. J. Olver)开始讨论如何使用超运算以防止计算机浮点数溢出。F

n

(

a

,

0

)

=

0

{\displaystyle F_{n}(a,0)=0}

作为初始条件,这就产生了又一个超运算等级。

n

运算

注释

1

F

1

(

a

,

b

)

=

a

+

b

{\displaystyle F_{1}(a,b)=a+b}

2

F

2

(

a

,

b

)

=

a

b

=

e

ln

(

a

)

+

ln

(

b

)

{\displaystyle F_{2}(a,b)=ab=e^{\ln(a)+\ln(b)}}

3

F

3

(

a

,

b

)

=

a

b

=

e

b

ln

(

a

)

{\displaystyle F_{3}(a,b)=a^{b}=e^{b\ln(a)}}

4

F

4

(

a

,

b

)

=

a

[

4

]

(

b

1

)

{\displaystyle F_{4}(a,b)=a[4](b-1)}

类似超-4运算,但其迭代函数比普通超-4运算更为复杂

5

F

5

(

a

,

b

)

=

(

x

a

[

4

]

(

x

1

)

)

b

(

0

)

{\displaystyle F_{5}(a,b)=(x\mapsto a[4](x-1))^{b}(0)}

不要与超-5运算相混淆

交换超运算

1914年阿尔伯特·贝内特提出了超运算,很可能是关于超运算最早的尝试。交换超运算通过以下递归法则定义:

F

n

+

1

(

a

,

b

)

=

exp

(

F

n

(

ln

(

a

)

,

ln

(

b

)

)

)

{\displaystyle F_{n+1}(a,b)=\exp(F_{n}(\ln(a),\ln(b)))}

由于a和b的对称性,意味着所有的超运算都是可交换的。但由于序列并不包括幂运算,因此也就不能成为一个超运算等级。

n

运算

注释

0

F

0

(

a

,

b

)

=

ln

(

e

a

+

e

b

)

{\displaystyle F_{0}(a,b)=\ln(e^{a}+e^{b})}

1

F

1

(

a

,

b

)

=

a

+

b

=

ln

(

e

a

e

b

)

{\displaystyle F_{1}(a,b)=a+b=\ln(e^{a}e^{b})}

2

F

2

(

a

,

b

)

=

a

b

=

e

ln

(

a

)

+

ln

(

b

)

{\displaystyle F_{2}(a,b)=ab=e^{\ln(a)+\ln(b)}}

由对数性质而来

3

F

3

(

a

,

b

)

=

e

ln

(

a

)

ln

(

b

)

{\displaystyle F_{3}(a,b)=e^{\ln(a)\ln(b)}}

幂运算的可交换形式

4

F

4

(

a

,

b

)

=

e

e

ln

(

ln

(

a

)

)

ln

(

ln

(

b

)

)

{\displaystyle F_{4}(a,b)=e^{e^{\ln(\ln(a))\ln(\ln(b))}}}

不要与超-4运算相混淆

均衡超运算

均衡超运算于1991年首先由克莱门特·弗拉皮耶(Clément Frappier)提出x

x

{\displaystyle x^{x}}

的,因而与斯坦豪斯-莫泽表示法(Steinhaus-Moser notation)有关。均衡超运算的递归法则是

F

n

+

1

(

a

,

b

)

=

(

x

F

n

(

x

,

x

)

)

log

2

(

b

)

(

a

)

{\displaystyle F_{n+1}(a,b)=(x\to F_{n}(x,x))^{\log _{2}(b)}(a)}

n

运算

注释

0

不存在

1

F

1

(

a

,

b

)

=

a

+

b

{\displaystyle F_{1}(a,b)=a+b}

2

F

2

(

a

,

b

)

=

a

b

=

a

2

log

2

(

b

)

{\displaystyle F_{2}(a,b)=ab=a2^{\log _{2}(b)}}

3

F

3

(

a

,

b

)

=

a

b

=

a

2

log

2

(

b

)

{\displaystyle F_{3}(a,b)=a^{b}=a^{2^{\log _{2}(b)}}}

就是幂运算

4

F

4

(

a

,

b

)

=

(

x

x

x

)

log

2

(

b

)

(

a

)

{\displaystyle F_{4}(a,b)=(x\to x^{x})^{\log _{2}(b)}(a)}

不要与超-4运算相混淆

低级超运算

还有一种变化形式的特点是从左到右的顺序进行求值,即:

a

+

b

=

(

a

+

(

b

1

)

)

+

1

{\displaystyle a+b=(a+(b-1))+1}

a

×

b

=

(

a

×

(

b

1

)

)

+

a

{\displaystyle a\times b=(a\times (b-1))+a}

a

b

=

(

a

(

b

1

)

)

×

a

{\displaystyle a^{b}=(a^{(b-1)})\times a}

令(通过°或下标)a

(

n

+

1

)

b

=

(

a

(

n

+

1

)

(

b

1

)

)

(

n

)

a

{\displaystyle a_{(n+1)}b=(a_{(n+1)}(b-1))_{(n)}a}

,有初始条件a

(

1

)

b

=

a

+

b

,

a

(

2

)

0

=

0

{\displaystyle a_{(1)}b=a+b,a_{(2)}0=0}

,且对所有n

>

2

{\displaystyle n>2}

a

(

n

)

0

=

1

{\displaystyle a_{(n)}0=1}

这样所产生的一个问题是,在4阶时它就与通常的定义不同:a

(

4

)

b

=

a

(

a

(

b

1

)

)

{\displaystyle a_{(4)}b=a^{(a^{(b-1)})}}

。出现这一问题的原因在于加法和乘法运算有一种称为结合律的对称性,但这在幂运算上并不成立。由于通过这种超运算所得到的结果在3阶以上都比普通的超运算更小,因而把这种超运算称为低级超运算。

n

运算

注释

0

a

+

1

{\displaystyle a+1}

后继函数

1

F

1

(

a

,

b

)

=

a

+

b

{\displaystyle F_{1}(a,b)=a+b}

2

F

2

(

a

,

b

)

=

a

b

{\displaystyle F_{2}(a,b)=ab}

3

F

3

(

a

,

b

)

=

a

b

{\displaystyle F_{3}(a,b)=a^{b}}

幂运算

4

F

4

(

a

,

b

)

=

a

a

(

b

1

)

{\displaystyle F_{4}(a,b)=a^{a^{(b-1)}}}

不要与超-4运算相混淆

5

F

5

(

a

,

b

)

=

(

x

x

x

(

a

1

)

)

b

1

(

a

)

{\displaystyle F_{5}(a,b)=(x\to x^{x^{(a-1)}})^{b-1}(a)}

不要与超-5运算相混淆

参考文献

R. L. Goodstein. Transfinite Ordinals in Recursive Number Theory. Journal of Symbolic Logic. Dec 1947, 12 (4): 123–129 [2009-04-17]. doi:10.2307/2266486.

G. F. Romerio. Hyperoperations Terminology. Tetration Forum. 2008-01-21 [2009-04-21]. 外部链接存在于|publisher= (帮助)

I. N. Galidakis. Mathematics. 2003 [2009-04-17]. (原始内容存档于2009-04-20).

Albert A. Bennett. Note on an Operation of the Third Grade. Annals of Mathematics, Second Series. Dec 1915, 17 (2): 74–75 [2009-04-17].

Wilhelm Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische Annalen. 1928, 99: 118–133. doi:10.1007/BF01459088.

Paul E. Black. Ackermann's function. Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology (NIST). 2009-03-16 [2009-04-17]. (原始内容存档于2009-04-22). 外部链接存在于|work= (帮助)

Robert Munafo. Versions of Ackermann's Function. Large Numbers at MROB. 1999-11-03 [2009-04-17].

J. Cowles and T. Bailey. Several Versions of Ackermann's Function. Dept. of Computer Science, University of Wyoming, Laramie, WY. 1988-09-30 [2009-04-17].

Donald E. Knuth. Mathematics and Computer Science: Coping with Finiteness. Science. Dec 1976, 194 (4271): 1235–1242 [2009-04-21]. PMID 17797067. doi:10.1126/science.194.4271.1235.

Daniel Zwillinger. CRC standard mathematical tables and formulae, 31st Edition. CRC Press. 2002: 4. ISBN 1584882913.

Eric W. Weisstein. CRC concise encyclopedia of mathematics, 2nd Edition. CRC Press. 2003: 127–128. ISBN 1584883472.

K. K. Nambiar. Ackermann Functions and Transfinite Ordinals. Applied Mathematics Letters. 1995, 8 (6): 51–53 [2009-04-21]. doi:10.1016/0893-9659(95)00084-4.

C. A. Rubtsov and G. F. Romerio. Ackermann's Function and New Arithmetical Operation. 2005-12 [2009-04-17].

Robert Munafo. Inventing New Operators and Functions. Large Numbers at MROB. 1999-11 [2009-04-17].

C.W. Clenshaw and F.W.J. Olver. Beyond floating point. Journal of the ACM. Apr 1984, 31 (2): 319–328 [2009-04-21]. doi:10.1145/62.322429.

W. N. Holmes. Composite Arithmetic: Proposal for a New Standard. Computer. Mar 1997, 30 (3): 65–73 [2009-04-21]. doi:10.1109/2.573666.

R. Zimmermann. Computer Arithmetic: Principles, Architectures, and VLSI Design (PDF). Lecture notes, Integrated Systems Laboratory, ETH Zürich. 1997 [2009-04-17]. (原始内容 (PDF)存档于2013-08-17).

T. Pinkiewicz and N. Holmes and T. Jamil. Design of a composite arithmetic unit for rational numbers. Proceedings of the IEEE: 245–252. 2000 [2009-04-17].

C. Frappier. Iterations of a kind of exponentials. Fibonacci Quarterly. 1991, 29 (4): 351–361.

相关条目无穷小量 · 不确定数字和虚拟数字(英语:Indefinite and fictitious numbers) · 泰坦质数(英语:Titanic prime) · 吉甘质数(英语:Gigantic prime) · 麦咖质数(英语:Megaprime) · 已知的最大质数

名字(英语:Names of large numbers) · 历史(英语:History of large numbers)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值