
内容来自:“小白学统计”微信公众号,感谢作者授权。
不少人可能对方差齐性检验不是很重视,觉得正态性可能更重要,但其实方差齐性的重要程度可能更大,因为它可能会让你的标准误发生很大变化,从而导致结论的变化。线性回归中,方差齐性是一个必须考虑的前提条件。
本文主要介绍一下,如何理解线性回归中的方差齐性的含义,以及如何对方差是否齐性进行探测。
线性回归中方差齐性的含义
所谓方差齐性,也就是方差相等,在t检验和方差分析中,都需要满足这一前提条件。
在两组和多组比较中,方差齐性的意思很容易理解,无非就是比较各组的方差大小,看看各组的方差是不是差不多大小,如果差别太大,就认为是方差不齐,或方差不等。如果差别不大,就认为方差齐性或方差相等。当然,这种所谓的差别大或小,需要统计学的检验,所以就有了方差齐性检验。
在两组和多组比较中,每组都有很多数据,可以求出每组的方差,然后比较就行了,很容易理解。但是在线性回归中,有的人就不理解方差齐性是什么意思了。因为线性回归中自变量x不是分类变量,x取值很多。
通常情况下,每个x值只对应1个y值。比如&#x