题目:
Given a set of distinct integers, S, return all possible subsets.
Note:Elements in a subset must be in non-descending order.
The solution set must not contain duplicate subsets.
For example,
If S = [1,2,3], a solution is:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
题解:
一个思路就是套用combination的方法,其实combination那道题就是在求不同n下的subset,这里其实是要求一个集合罢了。
例如k=3,n=1,用combination那道题的方法求得集合是[[1], [2], [3]];
k=3, n=2, 用combination那道题的方法求得集合是[[1, 2], [1, 3], [2, 3]]
k=3, n=3, 用combination那道题的方法求得集合是[[1,2,3]]
所以上述3个集合外加一个空集不就是
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
么?
只需要在combination的外面加个循环即可。
代码如下:
1 public static void dfs(int[] S, int start, int len, ArrayList item,ArrayList> res){
2 if(item.size()==len){
3 res.add(new ArrayList(item));
4 return;
5 }
6 for(int i=start; i
7 item.add(S[i]);
8 dfs(S, i+1, len, item, res);
9 item.remove(item.size()-1);
10 }
11
12 }
13
14 public static ArrayList> subsets(int[] S) {
15 ArrayList> res = new ArrayList> ();
16 ArrayList item = new ArrayList();
17 if(S.length==0||S==null)
18 return res;
19
20 Arrays.sort(S);
21 for(int len = 1; len<= S.length; len++)
22 dfs(S,0,len,item,res);
23
24 res.add(new ArrayList());
25
26 return res;
27 }Reference:http://blog.csdn.net/worldwindjp/article/details/23300545
底下是另外一个很精炼的算法。
1 public static void dfs(int[] S, int start, ArrayList item,ArrayList> res){
2 for(int i=start; i
3 item.add(S[i]);
4 res.add(new ArrayList(item));
5 dfs(S,i+1, item,res);
6 item.remove(item.size()-1);
7 }
8
9 }
10
11 public static ArrayList> subsets(int[] S) {
12 ArrayList> res = new ArrayList> ();
13 ArrayList item = new ArrayList();
14 if(S.length==0||S==null)
15 return res;
16
17 Arrays.sort(S);
18 dfs(S,0,item,res);
19 res.add(new ArrayList());
20
21 return res;
22 }Reference:http://blog.csdn.net/u011095253/article/details/9158397