半圆阴影_没有办法了,只好用初中数学方法求阴影部分面积了

博主使用初中数学方法详细解析了前文《小学六年级奥数:求阴影部分面积》中遗留的难题,通过反三角函数和正弦定理求解了阴影部分面积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我在前文:

——《小学六年级奥数:求阴影部分面积》

中留了两道难题,一直惦记于心。今时今日,黔驴技穷,实在不能用“小学数学方法”予以解答,十分苦恼。转念一想,此类题目若是用超出限定范围的方法解答,又会是什么情况呢?便尝试了一下,可以解决了。今日先发一文,给出前文“难题2”的详细分析和解题过程。

题目如下图:

2f2f38142b820bb2e86f5709bfa0c45e.png

难题2

为了表达的方便,首先作下图:

5e5d066b8b1e23e964ea770820a01abe.png

(一)探索思路

由于:

S阴影=S△ABC―S1―S2

求解S阴影的问题转化为分别求解:S△ABC、 S1、S2;

S△ABC=S长方形ABCD÷2,可解;

S1=(S长方形ABCD―S半圆ECGD)÷2,可解;

由于:

S2=S扇形ECGF―S3

解题的关键进一步转化为求解圆心角∠1的度数;

由于:

EC=EF=半径=宽

所以:

∠2=∠3

∠1=180°―2×∠2

求解∠2的度数变为新的关键;

在RT△ACD中,有:

tan(∠2)=AD÷CD=4÷8=0.5

利用反正切函数即可求得∠2的度数。

(二)解题过程

∠2=arctan(AD÷CD)

=arctan(4÷8)

=arctan(0.5)

≈26.565051177077989351572193720453°

∠1=180°―2×∠2

=180°―2×26.565051177077989351572193720453°

≈126.86989764584402129685561255909°

S扇形ECGF=π×r×r×∠1÷360°

=3.1415926535897932384626433832795×4×4×126.86989764584402129685561255909°÷360°

≈17.714379484705448048273047362857

本步根据正弦定理求三角形CEF的面积:

S3=CE×EF×sin(∠1)÷2

=4×4×sin(126.86989764584402129685561255909°)÷2

=6.4

此步中:sin(∠1)=0.8让我怀疑该题说不定有“小学解”,这个正弦值太凑巧了。本题值得进一步思索。

S2=S扇形ECGF―S3

=17.714379484705448048273047362857―6.4

≈11.314379484705448048273047362857

S1=(S长方形ABCD―S半圆ECGD)÷2

=(8×4―3.1415926535897932384626433832795×4×4×÷2)÷2

≈3.433629385640827046149426466882

S阴影=S△ABC―S1―S2

=8×4÷2―3.433629385640827046149426466882―11.314379484705448048273047362857

≈1.251991129653724905577526170261

(三)回顾反思

本文的解法在两个方面超越了“小学数学方法”范围:

1.利用反三角函数arctan(0.5)表达并计算圆心角∠1的度数;

2.利用正弦定理:

S△ABC=a×b×sin(C) ÷2=b×c×sin(A) ÷2=a×c×sin(B) ÷2

求解三角形CEF的面积。

真心希望有大神出现,能够给出本题的“小学解法”。

1c8a2c075cc09cb231fd3f3eb0640732.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值