我在前文:
——《小学六年级奥数:求阴影部分面积》
中留了两道难题,一直惦记于心。今时今日,黔驴技穷,实在不能用“小学数学方法”予以解答,十分苦恼。转念一想,此类题目若是用超出限定范围的方法解答,又会是什么情况呢?便尝试了一下,可以解决了。今日先发一文,给出前文“难题2”的详细分析和解题过程。
题目如下图:

难题2
为了表达的方便,首先作下图:

(一)探索思路
①由于:
S阴影=S△ABC―S1―S2
求解S阴影的问题转化为分别求解:S△ABC、 S1、S2;
②S△ABC=S长方形ABCD÷2,可解;
③S1=(S长方形ABCD―S半圆ECGD)÷2,可解;
④由于:
S2=S扇形ECGF―S3
解题的关键进一步转化为求解圆心角∠1的度数;
⑤由于:
EC=EF=半径=宽
所以:
∠2=∠3
∠1=180°―2×∠2
求解∠2的度数变为新的关键;
⑥在RT△ACD中,有:
tan(∠2)=AD÷CD=4÷8=0.5
利用反正切函数即可求得∠2的度数。
(二)解题过程
①∠2=arctan(AD÷CD)
=arctan(4÷8)
=arctan(0.5)
≈26.565051177077989351572193720453°
②∠1=180°―2×∠2
=180°―2×26.565051177077989351572193720453°
≈126.86989764584402129685561255909°
③S扇形ECGF=π×r×r×∠1÷360°
=3.1415926535897932384626433832795×4×4×126.86989764584402129685561255909°÷360°
≈17.714379484705448048273047362857
④本步根据正弦定理求三角形CEF的面积:
S3=CE×EF×sin(∠1)÷2
=4×4×sin(126.86989764584402129685561255909°)÷2
=6.4
此步中:sin(∠1)=0.8让我怀疑该题说不定有“小学解”,这个正弦值太凑巧了。本题值得进一步思索。
⑤S2=S扇形ECGF―S3
=17.714379484705448048273047362857―6.4
≈11.314379484705448048273047362857
⑥S1=(S长方形ABCD―S半圆ECGD)÷2
=(8×4―3.1415926535897932384626433832795×4×4×÷2)÷2
≈3.433629385640827046149426466882
⑦S阴影=S△ABC―S1―S2
=8×4÷2―3.433629385640827046149426466882―11.314379484705448048273047362857
≈1.251991129653724905577526170261
(三)回顾反思
本文的解法在两个方面超越了“小学数学方法”范围:
1.利用反三角函数arctan(0.5)表达并计算圆心角∠1的度数;
2.利用正弦定理:
S△ABC=a×b×sin(C) ÷2=b×c×sin(A) ÷2=a×c×sin(B) ÷2
求解三角形CEF的面积。
真心希望有大神出现,能够给出本题的“小学解法”。
