scilab 求微分,使用scilab求解和绘制微分方程

本文介绍了如何使用Scilab的ode()函数解决二阶微分方程,并以RLC电路信号为例进行说明。通过调整代码中函数和向量的形状,成功绘制出微分方程的解。
摘要由CSDN通过智能技术生成

How can I solve the second order differential equation using scilab ode() function.

(For example: y'' + 3y' +2y = f(x), y(0)=0, y'(0)=0)

And then plot the result of function y(x).

I want to use this to model the RLC-circuit signal with step-function input

Here is the code I tried

function y=u(t)

y=(sign(t)+1)/2

endfunction

L=0.001

R=10

C=0.000001

function zdot=f(t,y)

zdot(1)= y(2);

zdot(2)=(u(t)-y(1)-L*y(2)/R)/(L*C);

endfunction

y0=[0,0];

t0=0;

t=0:0.00001:0.001;

out=ode(y0,t0,t,f);

clf();

plot(out);

Thank you a lot

解决方案

You were nearly there, you only had problems with the shape of the vectors and how that affects t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值