题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007输入描述:
题目保证输入的数组中没有的相同的数字
数据范围:
对于%50的数据,size<=10^4
对于%75的数据,size<=10^5
对于%100的数据,size<=2*10^5
示例1
输入
1,2,3,4,5,6,7,0
输出
7
思路: 采用归并排序
分治的思想,将数组不断一分为二,直到数组中只有两个元素,统计逆序对个数。然后对相邻的两个子数组进行合并,由于已经统计了这两对子数组内部的逆序对,因此需要把这两对子数组进行排序,避免在之后的统计过程中重复统计。在合并的时候也要计算组间的逆序对个数。
逆序对的总数 = 左边数组中的逆序对的数量 + 右边数组中逆序对的数量 + 左右结合成新的顺序数组时中出现的逆序对的数量
整个过程是一个归并排序的算法。
归并排序的性能不受输入数据的影响,时间复杂度始终都是
。代价是需要额外的内存空间。