fbp是什么岗位_BP是什么职位?

展开全部

BP(business partner)——业务伙伴32313133353236313431303231363533e4b893e5b19e31333366303665:连接财务部门与业务部门的关键纽带,这个岗位的人即要懂财务,又要懂业务,同时他了解财务工作的各个模块,做好桥梁、用财务专业帮助业务部门解决问题,才是其根本价值。

岗位职责:

1.负责建立健全财务BP服务流程;

2.负责为业务部门提供多种财务解决方案,协助处理业务部门涉及财税相关工作;

3.负责梳理及处理业务部门涉及的财务相关流程问题,为业务部门流程优化提供财务支持;

4.建立财务收益管理模型,进行财务预测、提示风险;

5.对业务部门各项目进行事前,事中,事后跟踪管理,业务盈亏测算、活动测算;

6.品牌提出的其他合理需求、提供财务支持;

7.深入了解各品牌业务模式,对接业务与财务衔接工作。

5ec4859d35fdfb76a722529c8d08d7ad.png

扩展资料

素质要求:

1.战略贡献:

(1)变革领导:要具备可以去激励并推动组织中的成员成为变革中的一员的能力;

(2)要有能力在本组织以及其他组织内发现关联以及相互关系,并找到关键人物;

(3)客户服务导向:集中关注和发现客户的需求,并尽力满足客户需求。

2.专业信用:

(1)战略思考:将自身的业务和所处环境结合起来,发现突出的成功因素的能力;

(2)构建人力资源架构和管理体系:理解人和组织是企业长期成功的关键因素,并将其转化为当前发展形势下的人力、程序和系统;

(3)专业技能:了解人力资源管理领域的专业知识,将其变得可视化并且不断扩充知识。

3.人力资源部门领导力:

(1)作用和影响:洞察他人及他们的兴趣点,说服并影响他人,从而在某个观点或目标上给予支持;

(2)主动性:发现问题、找到机遇和可能,并采取行动。

4.个人信誉:

(1)成就驱动力:为达到极为出色的表现,并超越绩效标准;

(2)探究型驱动力:有天生的好奇心以及想要去了解其他人和当前事物的渴望;

(3)勇气和正直:勇于说出自己认为正确的事情。

``` radon_288_736 = para_prepare_parallel(2.5) radon_72_736 = para_prepare_parallel(8.5) radon_36_736 = para_prepare_parallel(16.5) helper = {"fbp_para_288_736": radon_288_736, "fbp_para_36_736": radon_36_736, "fbp_para_72_736": radon_72_736} for i in range(0, num//args.batch_size):# model_kwargs = next(data) raw_img = model_kwargs.pop('raw_img').to("cuda") index = model_kwargs.pop('index') model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()} model_kwargs["fbp_para_36_736"] = radon_36_736 model_kwargs["fbp_para_288_736"] = radon_288_736 sample_fn = p_sample_loop_super_res sample, sample_72_288 = sample_fn( model, (args.batch_size, 1, 288, 736), #args.large_size, args.large_size # clip_denoised=args.clip_denoised, model_kwargs=model_kwargs, ) model_72_sino = F.interpolate(sample_72_288, [72, 736], mode="nearest") model_72_fbp = run_reco(model_72_sino + 1., helper["fbp_para_72_736"])[:,:,112:624,112:624] model_72_fbp_npy = model_72_fbp.cpu().detach().numpy() model_output_fbp = run_reco(sample + 1., helper["fbp_para_288_736"])[:,:,112:624,112:624] target_fbp = run_reco(raw_img + 1., helper["fbp_para_288_736"])[:,:,112:624,112:624] output_fbp_npy = model_output_fbp.cpu().detach().numpy() for j in range(0, args.batch_size): l2loss_value = l2loss(model_output_fbp[j], target_fbp[j]).item() print("index:", index[j], "MSELoss:", l2loss_value) MSE.append(l2loss_value) raw_npy = target_fbp.cpu().detach().numpy() ssim_value = ssim(np.squeeze(output_fbp_npy[j]),np.squeeze( raw_npy[j]), data_range = raw_npy[j].max() - raw_npy[j].min()) psnr_value = psnr(np.squeeze(output_fbp_npy[j]),np.squeeze( raw_npy[j]), data_range = raw_npy[j].max() - raw_npy[j].min()) print("index:", index[j], "SSIM:", ssim_value) SSIM.append(ssim_value) PSNR.append(psnr_value) lpip_value = lpip_loss(model_output_fbp[j], target_fbp[j]) print("lpips:", lpip_value.item()) LPIP.append(lpip_value.item())```什么意思
04-03
这段代码主要用于图像重建、超分辨率生成以及评估模型性能的任务中,结合了前向投影(FBP)、反向传播和多种指标计算。以下是逐段解释: --- ### **代码的主要功能** #### **初始化部分** ```python radon_288_736 = para_prepare_parallel(2.5) radon_72_736 = para_prepare_parallel(8.5) radon_36_736 = para_prepare_parallel(16.5) helper = {"fbp_para_288_736": radon_288_736, "fbp_para_36_736": radon_36_736, "fbp_para_72_736": radon_72_736} ``` - `para_prepare_parallel` 函数用于准备 Radon 变换的参数,Radon变换是一种将二维函数转换为一维投影的技术,在医学成像领域广泛应用。 - 这里的三个变量分别表示不同的角度采样配置 (`2.5`, `8.5`, 和 `16.5`) 下的平行束投影矩阵。 #### **主循环开始** ```python for i in range(0, num // args.batch_size): model_kwargs = next(data) raw_img = model_kwargs.pop('raw_img').to("cuda") # 将原始数据转移到GPU上处理 index = model_kwargs.pop('index') # 获取样本索引信息 model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()} # 转移到设备(如 GPU) model_kwargs["fbp_para_36_736"] = radon_36_736 # 添加额外的参数到输入字典中 model_kwargs["fbp_para_288_736"] = radon_288_736 sample_fn = p_sample_loop_super_res # 定义采样函数 sample, sample_72_288 = sample_fn( # 使用扩散模型进行高分辨率重建 model, (args.batch_size, 1, 288, 736), model_kwargs=model_kwargs, ) ``` ##### 解释: - 循环从批量数据加载器获取一批训练数据,并对每个批次的数据依次执行操作。 - `model_kwargs` 包含传递给神经网络的动态参数。 - 利用扩散模型的超级分辨率生成算法 `p_sample_loop_super_res()` 来生成高分辨结果 `(sample)` 和中间维度的结果 `(sample_72_288)`. #### **插值与滤波反投影 (Filtered Back Projection)** ```python model_72_sino = F.interpolate(sample_72_288, [72, 736], mode="nearest") model_72_fbp = run_reco(model_72_sino + 1., helper["fbp_para_72_736"])[:, :, 112:624, 112:624] model_output_fbp = run_reco(sample + 1., helper["fbp_para_288_736"])[:, :, 112:624, 112:624] # 滤波反投影输出图 target_fbp = run_reco(raw_img + 1., helper["fbp_para_288_736"])[:, :, 112:624, 112:624] ``` - 先利用最近邻差值法调整尺寸至 `[72, 736]`. - 然后通过反投影运算得到最终图片. #### **评价模块** ```python output_fbp_npy = model_output_fbp.cpu().detach().numpy() # 对于每一个batch中的元素单独比较误差度量 for j in range(0, args.batch_size): l2loss_value = l2loss(model_output_fbp[j], target_fbp[j]).item() print(f"index:{index[j]}, MSELoss:{l2loss_value}") MSE.append(l2loss_value) ssim_value = ssim(np.squeeze(output_fbp_npy[j]), np.squeeze(target_fbp[j].cpu()), data_range=target_fbp[j].max()-target_fbp[j].min()) psnr_value = psnr(np.squeeze(output_fbp_npy[j]), np.squeeze(target_fbp[j].cpu()), data_range=target_fbp[j].max()-target_fbp[j].min()) print(f"index:{index[j]}, SSIM:{ssim_value}, PSNR:{psnr_value}") SSIM.append(ssim_value); PSNR.append(psnr_value) lpip_value = lpip_loss(model_output_fbp[j], target_fbp[j]) print(f"lpips value={lpip_value.item()}") LPIP.append(lpip_value.item()) ``` 这部分主要是通过一系列图像质量评估标准来衡量预测效果如何接近真实目标: - Mean Squared Error (**L2Loss**) 衡量两幅图像像素之间的平均平方差异; - Structural Similarity Index Measure (**SSIM**) 测算两张图片结构相似程度; - Peak Signal-to-Noise Ratio (**PSNR**) 描述压缩失真情况下的信号强度比例关系; - Learned Perceptual Image Patch Similarity (**LPIPS**) 更贴近人眼感知判断两者间的视觉距离差距。 ### 总结: 该脚本实现了基于深度学习框架下的 CT 成像任务流程:包括预处理、正则化参数设定、应用扩散模型完成超分任务并借助传统FPR技术形成最终重构影像及量化评测体系构建。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值