matlab布尔代数运算法则,布尔代数法则.pdf

布尔代数法则

• 布尔代数(开关代数、逻辑代数)

• 它是一个封闭的代数系统,它可记为:

L={K,+,·, ̄,0 ,1}

其中K表示逻辑变量集;+表示"或"运算, ·表示"

与"运算, ̄表示"非"运算;

0和1表示常量,又表示自变量的定义域,又是函数

的值域。

• 公理:

A1 :X=0 ≠if X1 A1':X=1 ≠if X0

A2:if X=0,then X’=1 ’:A2if x=1,then X’=0

A3:0·0=0 A3’:1+1+1

A4:1·1=1 A4’:0+0=0

A5:0·1=1·0=0 A5’:0+1=1+0=1

•公理1:布尔代数是二值代数,0和1表示

常量,又表示自变量的定义域,又是函

数的值域。

•公理2 :非运算的定义。

•公理3,4 ,5:与运算和或运算的定义。

•单变量定理:

–恒等律T1 : X+0=X T1’:X ·1=X

– 空元素律T2 :X+1=1 T2’:X ·0=0

– 幂等律T3 : X+X=X T3’:X ·X=X

–对合律T4 : (X’)’=X

– 互补律T5 : X+X ’=1 T5’:X ·X ’=0

•2和3变量的定理

– 交换律T6 :X+Y=Y+X T6’:X ·Y=Y ·X

– 结合律T7: (X+Y)+Z=X+(Y+Z)

T7’: (X·Y) ·Z=X ·(Y ·Z)

– 分配律T8 :X ·Y+X ·Z=X ·(Y+Z)

T8’: (X+Y) ·(X+Z)=X+Y·Z

– 吸收律T9 :X+X ·Y=X T9’:X ·(X+Y)=X

– 并项律T10 :X ·Y+X ·Y ’=X

T10’: (X+Y) ·(X+Y’)=X

–包含律T11 :XY+X ’Z+YZ=XY+X ’Z

T11’: (X+Y)(X’+Z)(Y+Z)=(X+Y)(X ’+Z)

n

•n变量布尔代数定理

–广义幂等律T12 :X+X+ … +X=X

T12’:X ·X ·… ·X=X

– 德·摩根定律T13 :

(X ·X ·… ·Xn)’=X ’+X ’+ … +Xn ’

1 2 1 2

T13’:

(X +X + … +Xn)’=X ’·X ’·… ·Xn ’

1 2 1 2

–广义德·摩根定理T14 :(反演规则)

– 反演规则:对于任何一个逻辑函数F,若F表达

式中所有的“·”和“+”互换,“0”和“1”互换,原

变量和反变量互换,并保持原函数的运算顺序

不变则可得到函数F 的反函数F'。

例如: F=A'?B +C?D' 根据反演规则可得到

F'=(A+B')?(C'+D)

又如 F=A'+B'?(C+D'?E)根据反演规则得

到的反函数该是 F=A?[B+C'?(D+E')]

而不应该是 F=A?B+C'?D+E'

+ ?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值