布尔代数法则
• 布尔代数(开关代数、逻辑代数)
• 它是一个封闭的代数系统,它可记为:
L={K,+,·, ̄,0 ,1}
其中K表示逻辑变量集;+表示"或"运算, ·表示"
与"运算, ̄表示"非"运算;
0和1表示常量,又表示自变量的定义域,又是函数
的值域。
• 公理:
A1 :X=0 ≠if X1 A1':X=1 ≠if X0
A2:if X=0,then X’=1 ’:A2if x=1,then X’=0
A3:0·0=0 A3’:1+1+1
A4:1·1=1 A4’:0+0=0
A5:0·1=1·0=0 A5’:0+1=1+0=1
•公理1:布尔代数是二值代数,0和1表示
常量,又表示自变量的定义域,又是函
数的值域。
•公理2 :非运算的定义。
•公理3,4 ,5:与运算和或运算的定义。
•单变量定理:
–恒等律T1 : X+0=X T1’:X ·1=X
– 空元素律T2 :X+1=1 T2’:X ·0=0
– 幂等律T3 : X+X=X T3’:X ·X=X
–对合律T4 : (X’)’=X
– 互补律T5 : X+X ’=1 T5’:X ·X ’=0
•2和3变量的定理
– 交换律T6 :X+Y=Y+X T6’:X ·Y=Y ·X
– 结合律T7: (X+Y)+Z=X+(Y+Z)
T7’: (X·Y) ·Z=X ·(Y ·Z)
– 分配律T8 :X ·Y+X ·Z=X ·(Y+Z)
T8’: (X+Y) ·(X+Z)=X+Y·Z
– 吸收律T9 :X+X ·Y=X T9’:X ·(X+Y)=X
– 并项律T10 :X ·Y+X ·Y ’=X
T10’: (X+Y) ·(X+Y’)=X
–包含律T11 :XY+X ’Z+YZ=XY+X ’Z
T11’: (X+Y)(X’+Z)(Y+Z)=(X+Y)(X ’+Z)
n
•n变量布尔代数定理
–广义幂等律T12 :X+X+ … +X=X
T12’:X ·X ·… ·X=X
– 德·摩根定律T13 :
(X ·X ·… ·Xn)’=X ’+X ’+ … +Xn ’
1 2 1 2
T13’:
(X +X + … +Xn)’=X ’·X ’·… ·Xn ’
1 2 1 2
–广义德·摩根定理T14 :(反演规则)
– 反演规则:对于任何一个逻辑函数F,若F表达
式中所有的“·”和“+”互换,“0”和“1”互换,原
变量和反变量互换,并保持原函数的运算顺序
不变则可得到函数F 的反函数F'。
例如: F=A'?B +C?D' 根据反演规则可得到
F'=(A+B')?(C'+D)
又如 F=A'+B'?(C+D'?E)根据反演规则得
到的反函数该是 F=A?[B+C'?(D+E')]
而不应该是 F=A?B+C'?D+E'
+ ?