1.1 0-1定律
0
‾
=
1
\overline{0} = 1
0=1
1
‾
=
0
\overline{1} = 0
1=0
0
∙
A
=
0
0\bullet A = 0
0∙A=0
1
+
A
=
1
1 + A = 1
1+A=1
1
∙
A
=
A
1\bullet A = A
1∙A=A
0
+
A
=
A
0 + A = A
0+A=A
1.2 交换律
A
+
B
=
B
+
A
A + B = B + A
A+B=B+A
A
∙
B
=
B
∙
A
A\bullet B = B\bullet A
A∙B=B∙A
1.3 结合律
(
A
+
B
)
+
C
=
A
+
(
B
+
C
)
( A + B ) + C = A + ( B + C )
(A+B)+C=A+(B+C)
(
A
∙
B
)
∙
C
=
A
∙
(
B
∙
C
)
(A\bullet B)\bullet C = A\bullet (B\bullet C)
(A∙B)∙C=A∙(B∙C)
1.4 分配律
A
∙
(
B
+
C
)
=
A
∙
B
+
A
∙
C
A\bullet (B + C) = A\bullet B + A\bullet C
A∙(B+C)=A∙B+A∙C
A
+
B
∙
C
=
(
A
+
B
)
∙
(
A
+
C
)
A + B\bullet C = ( A + B )\bullet ( A + C )
A+B∙C=(A+B)∙(A+C)
1.5 吸收律
A
+
A
∙
B
=
A
A + A\bullet B = A
A+A∙B=A
A
∙
(
A
+
B
)
=
A
A\bullet (A + B) = A
A∙(A+B)=A
1.6 重复律
A
+
A
=
A
A + A = A
A+A=A
A
∙
A
=
A
A\bullet A = A
A∙A=A
1.7 互补律
A
∙
A
‾
=
0
A\bullet \overline{A} = 0
A∙A=0
A
+
A
‾
=
1
A + \overline{A} = 1
A+A=1
1.8 狄摩根定律
A
∙
B
∙
C
.
.
.
‾
=
A
‾
+
B
‾
+
C
‾
.
.
.
\overline{A\bullet B\bullet C...} = \overline{A} + \overline{B} + \overline{C}...
A∙B∙C...=A+B+C...
A
+
B
+
C
+
.
.
.
‾
=
A
‾
∙
B
‾
∙
C
‾
.
.
.
\overline{A + B + C+...} = \overline{A}\bullet \overline{B} \bullet \overline{C}...
A+B+C+...=A∙B∙C...
1.9 反演律
A
∙
B
‾
=
A
‾
+
B
‾
\overline{A\bullet B} = \overline{A} + \overline{B}
A∙B=A+B
A
+
B
‾
=
A
‾
∙
B
‾
\overline{A + B} = \overline{A} \bullet \overline{B}
A+B=A∙B