布尔代数的基本定律

1.1 0-1定律

0 ‾ = 1 \overline{0} = 1 0=1
1 ‾ = 0 \overline{1} = 0 1=0
0 ∙ A = 0 0\bullet A = 0 0A=0
1 + A = 1 1 + A = 1 1+A=1
1 ∙ A = A 1\bullet A = A 1A=A
0 + A = A 0 + A = A 0+A=A

1.2 交换律

A + B = B + A A + B = B + A A+B=B+A
A ∙ B = B ∙ A A\bullet B = B\bullet A AB=BA

1.3 结合律

( A + B ) + C = A + ( B + C ) ( A + B ) + C = A + ( B + C ) (A+B)+C=A+(B+C)
( A ∙ B ) ∙ C = A ∙ ( B ∙ C ) (A\bullet B)\bullet C = A\bullet (B\bullet C) (AB)C=A(BC)

1.4 分配律

A ∙ ( B + C ) = A ∙ B + A ∙ C A\bullet (B + C) = A\bullet B + A\bullet C A(B+C)=AB+AC
A + B ∙ C = ( A + B ) ∙ ( A + C ) A + B\bullet C = ( A + B )\bullet ( A + C ) A+BC=(A+B)(A+C)

1.5 吸收律

A + A ∙ B = A A + A\bullet B = A A+AB=A
A ∙ ( A + B ) = A A\bullet (A + B) = A A(A+B)=A

1.6 重复律

A + A = A A + A = A A+A=A
A ∙ A = A A\bullet A = A AA=A

1.7 互补律

A ∙ A ‾ = 0 A\bullet \overline{A} = 0 AA=0
A + A ‾ = 1 A + \overline{A} = 1 A+A=1

1.8 狄摩根定律

A ∙ B ∙ C . . . ‾ = A ‾ + B ‾ + C ‾ . . . \overline{A\bullet B\bullet C...} = \overline{A} + \overline{B} + \overline{C}... ABC...=A+B+C...
A + B + C + . . . ‾ = A ‾ ∙ B ‾ ∙ C ‾ . . . \overline{A + B + C+...} = \overline{A}\bullet \overline{B} \bullet \overline{C}... A+B+C+...=ABC...

1.9 反演律

A ∙ B ‾ = A ‾ + B ‾ \overline{A\bullet B} = \overline{A} + \overline{B} AB=A+B
A + B ‾ = A ‾ ∙ B ‾ \overline{A + B} = \overline{A} \bullet \overline{B} A+B=AB

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值