初一数学下学期的二元一次方程组的求解以及相关题型,是考试必考的内容,之前我们已经详细的学习了代入消元法的相关方法和题型,今天我么继续交流学习加减消元法的相关知识点,通过基础题型和提高,掌握解题的思路方法,明确加减消元法的要点。
一、加减法解二元一次方程组

第一题,注意到方程组中y的系数互为相反数,可将两个方程直接相加即可消元。通过本题可以发现:如果两个方程中某个未知数的系数的绝对值相等,可将两个方程直接相加或相减,即可消去这个未知数。第二题,注意到方程组中x的系数成2倍关系,可将方程①的两边同乘2,使两个方程中x的系数相等,然后再相减消元。通过本题可以总结出:果两个方程中未知数的系数的绝对值不相等,但某一未知数的系数成整数倍,可将一个方程的系数进行变化,使这个未知数的系数的绝对值相等。

第三题,注意到两个方程中两个未知数的系数的和相等、差互为相反数,所以可将两个方程分别相加、相减,从而得到一个较简单的二元一次方程组。通过本题可以总结出:解方程组时,我们应根据方程组中未知数的系数的特点,通过将两个方程相加或相减,把原方程组转化为更简单的方程组来解。第四题,方程组中未知数的系数是分数或小数,一般要先化成整数后再消元。对于这类题目,当二元一次方程组的形式比较复杂时,通常是先通过变形(如去分母、去括号等),将它化为形式简单的方程组,再消元求解。

第一题,这类题目是二元一次方程组的变形,先将原方程写成方程组的形式后,再求解。也就是说先将每个式子化至最简,即形如ax+by=c的形式再消元。第二题,如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把x-y,x+y看作一个整体,则两个方程同解。因为方程组的解仅仅与未知数的系数有关,与未知数选用什么字母无关,因此把x-y,x+y分别看成一个整体当作未知数,可得x-y=3,x+y=1,得:x=2,y=-1。本例采用了类比的方法。
二、用适当方法解二元一次方程组

第一题,结合最近两次的内容,根据观察方程特点选择方法:(1)代入消元法;(2)先化简再加减或代入消元法。在选择解题方法的时候,一定要越简便越好。第二题,解决本题有多种方法:加减法或代入法,或整体代入法,整体代入法最简单。设(x+y)/6 =m, (x-y)/10=n。首先求出m,n,之后再求出x,y即可。第三题,解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解。本题的关键在于先整理,后分类讨论。