u家庭服务器信号输入接口,1. libt2usvr API 接口说明

本文档详细介绍了P2P SDK的初始化、设置密码、查询状态、获取连接状态等接口的使用方法,适用于Windows系统的设备,强调了在调用t2u_svr_init前需要先调用WSAStartup函数。通过这些接口,开发者可以实现设备的P2P服务启动、密码设置、状态检查以及连接信息查询等功能。
摘要由CSDN通过智能技术生成

1. libt2usvr API 接口说明

调用流程

注:如果是 Windows 系统,需要在调用 t2u_svr_init 前需要先调用 WSAStartup 函数。

1.1. t2u_svr_init

int t2u_svr_init(const char* svraddr,

unsigned short svrport,

const char* svrkey,

const char* uuid,

int threadnum);

接口说明:

用于初始化SDK,启动P2P服务。

参数说明:

svraddr: P2P 服务器 ip 地址或域名,开放平台服务器域名:nat.vveye.net

svrport: P2P 服务器端口,开放平台服务器端口:8000

svrkey: P2P 服务器密钥,开放平台服务器无密钥

uuid: 设备序列号,每个设备唯一

threadnum: 最大线程数,推荐值10

返回值:

0:成功

-1:失败

1.2. t2u_svr_set_passwd

int t2u_svr_set_passwd(const char* passwd);

接口说明:

用于设置设备端的 P2P 密码,如果设置了密码,客户端在与该设备创建 P2P 连接时,需要提供相同的密码方能创建成功。默认时无密码。

参数说明:

passwd: P2P 密码,小于16字节

返回值:

0:成功

-1:失败

1.3. t2u_svr_status

int t2u_svr_status();

接口说明:

查询当前设备服务端的 P2P 连接状态。

返回值:

1:已成功注册到服务器,可以进行 P2P 连接;

0:尚未注册到服务器

-1:未调用t2u_svr_init

-2:服务器密钥错误

-3:不正确的设备序列号

1.4. t2u_svr_conn_stats

int t2u_svr_conn_stats(char* outbuff,int buffsize);

接口说明:

查询当前已创建的多个p2p通道信息。

参数说明:

outbuff:

用于保存返回信息的缓冲区,返回的信息是字符串,记录每个已创建的 P2P 通道的信息,每条信息占一行,用'\n'分隔,其格式为:

ip地址:端口|丢包率(百分比,浮点数)|上行带宽(已废弃)\n

buffsize:用于保存返回信息的缓冲区大小,字节数。

返回值:

当前 P2P 通道的数量。

1.5. t2u_svr_exit

void t2u_svr_exit();

接口说明:

退出 P2P 程序,释放资源。

1.6. 参考实例

#include

#include "libt2usvr.h"

int main(int argc, char* argv[])

{

int ret;

char buff[10240];

//初始化

ret = t2u_svr_init("nat.vveye.net", 8000, NULL, "TEST-123456", 10);

printf("t2u_svr_init:%d\n", ret);

while(1)

{

sleep(2);

ret = t2u_svr_status();

printf("t2u_svr_status:%d\n", ret);

if (ret != 1)//如果没有注册到服务器,则继续等待

{

continue;

}

//查询当前p2p连接状态

ret = t2u_svr_conn_stats(buff, sizeof(buff));

if (ret > 0)

{

printf("%s\n", buff);

}

}

t2u_svr_exit();

}

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值