8种排序之间的关系:
1, 直接插入排序
(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
(2)实例
①直接插入排序
例:六个数12 15 9 20 6 31 24 用直接插入排序,如下图:
思路:
第一步:从给出的六个数中,随便拿出一个数,比如12,形成一个有序的数据序列(一个数当然是有序的数据序列了,不看12之外的数,就当其他的数不存在);
第二步:从剩下的五个数中挑出一个数来,比如15,和刚才的12作比较,12<15,因此,放在12后面,形成数据序列12 15;
第三步:从剩下的四个数中挑出一个数来,比如9,和刚才的有序数据序列12 15作比较,9 < 12 < 15,因此,放在最前面,形成数据序列9 12 15;
第N步,经过这样一个一个的插入并对比,就形成了上图所示的排序结果。在一个元素插入时,首先要和数据序列中最大的元素作比较,如果遇到相同的,则放在相同元素的后面。
特性:
因为要不断的插入,因此直接插入排序一般采用链表结构,属于稳定排序。
(3)用java实现
packagecom.njue;
publicclassinsertSort {
publicinsertSort(){
inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
inttemp=0;
for(inti=1;i
intj=i-1;
temp=a[i];
for(;j>=0&&temp
a[j+1]=a[j];//将大于temp的值整体后移一个单位
}
a[j+1]=temp;
}
for(inti=0;i
System.out.println(a[i]);
}
}
2, 希尔排序(最小增量排序)
(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
(2)实例:
是直接插入排序的改进,例:十个数57 68 59 52 72 28 96 33 24 19用希尔排序,如下图:
思路:
第一步:用排序数字的总数除以2,取奇数得到步长(增量)d1 = 5;
第二步:根据步长d1,将十个数分成五组,如图所示,对这五组各自进行直接插入排序;
第三步:用步长d2继续除以2,取最近的奇数得到步长d2=3;
第四步:根据步长d2,将十个数分成三组,如图所示,对着五组各自进行直接插入排序;
第N步:重复上述分组和排序操作,直到步长变成1,即所有记录放进一个组中排序为止。
特性
由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
(3)用java实现
publicclassshellSort {
publicshellSort(){
inta[]={1,54,6,3,78,34,12,45,56,100};
doubled1=a.length;
inttemp=0;
while(true){
d1= Math.ceil(d1/2);
intd=(int) d1;
for(intx=0;x
for(inti=x+d;i
intj=i-d;
temp=a[i];
for(;j>=0&&temp