红楼梦人物关系 python_用Python来理一理红楼梦里的这些关系

本文介绍了如何使用Python的jieba库和pyecharts来分析《红楼梦》中的人物关系。通过对TXT文件进行分词处理,提取人物出现频率,并建立人物关系矩阵,最终绘制出人物关系图。
摘要由CSDN通过智能技术生成

最近把红楼梦又抽空看了一遍,古典中的经典,我真无法用言辞赞美她。今天,想跟大家一起用 Python 来理一理红楼梦中的的那些关系

不要问我为啥是红楼梦,而不是水浒三国或西游,都是经典,但我个人还是更喜欢偏古典的书,红楼梦也是我多次反复品读的为数不多的小说,对它的感情也是最深的。

好了好了这些都不重要,重要的是我们今天要用Python来理红楼梦的关系!

数据准备红楼梦 TXT 文件一份

金陵十二钗 + 贾宝玉 人物名称列表

人物列表内容如下:

宝玉 nr

黛玉 nr

宝钗 nr

湘云 nr

凤姐 nr

李纨 nr

元春 nr

迎春 nr

探春 nr

惜春 nr

妙玉 nr

巧姐 nr

秦氏 nr

这份列表,同时也是为了做分词时使用,后面的 nr 就是人名的意思。

数据处理

读取数据并加载词典with open("红楼梦.txt", encoding='gb18030') as f:

honglou = f.readlines()

jieba.load_userdict("renwu_forcut")

renwu_data = pd.read_csv("renwu_forcut", header=-1)

mylist = [k[0].split(" ")[0] for k in renwu_data.values.tolist()]

这样,我们就把红楼梦读取到了 honglou 这个变量当中,同时也通过 load_userdict 将我们自定义的词典加载到了 jieba 库中。

对文本进行分词处理并提取tmpNames = []

names = {}

relationships = {}

for h in honglou:

h.replace("贾妃", "元春")

h.replace("李宫裁", "李纨")

poss = pseg.cut(h)

tmpNames.append([])

for w in poss:

if w.flag != 'nr' or len(w.word) != 2 or w.word not in mylist:

continue

tmpNames[-1].append(w.word)

if names.get(w.word) is None:

names[w.word] = 0

relationships[w.word] = {}

names[w.word] += 1

首先,因为文中"贾妃", “元春”,“李宫裁”, “李纨” 混用严重,所以这里直接做替换处理。

然后使用 jieba 库提供的 pseg 工具来做分词处理,会返回每个分词的词性。

之后做判断,只有符合要求且在我们提供的字典列表里的分词,才会保留。

一个人每出现一次,就会增加一,方便后面画关系图时,人物 node 大小的确定。

对于存在于我们自定义词典的人名,保存到一个临时变量当中 tmpNames。

处理人物关系for name in tmpNames:

for name1 in name:

for name2 in name:

if name1 == name2:

continue

if relationships[name1].get(name2) is None:

relationships[name1][name2] = 1

else:

relationships[name1][name2] += 1

对于出现在同一个段落中的人物,我们认为他们是关系紧密的,每同时出现一次,关系增加1.

保存到文件with open("relationship.csv", "w", encoding='utf-8') as f:

f.write("Source,Target,Weight\n")

for name, edges in relationships.items():

for v, w in edges.items():

f.write(name + "," + v + "," + str(w) + "\n")

with open("NameNode.csv", "w", encoding='utf-8') as f:

f.write("ID,Label,Weight\n")

for name, times in names.items():

f.write(name + "," + name + "," + str(times) + "\n")文件1:人物关系表,包含首先出现的人物、之后出现的人物和一同出现次数

文件2:人物比重表,包含该人物总体出现次数,出现次数越多,认为所占比重越大。

制作关系图表

使用 pyecharts 作图def deal_graph():

relationship_data = pd.read_csv('relationship.csv')

namenode_data = pd.read_csv('NameNode.csv')

relationship_data_list = relationship_data.values.tolist()

namenode_data_list = namenode_data.values.tolist()

nodes = []

for node in namenode_data_list:

if node[0] == "宝玉":

node[2] = node[2]/3

nodes.append({"name": node[0], "symbolSize": node[2]/30})

links = []

for link in relationship_data_list:

links.append({"source": link[0], "target": link[1], "value": link[2]})

g = (

Graph()

.add("", nodes, links, repulsion=8000)

.set_global_opts(title_opts=opts.TitleOpts(title="红楼人物关系"))

)

return g首先把两个文件读取成列表形式

对于“宝玉”,由于其占比过大,如果统一进行缩放,会导致其他人物的 node 过小,展示不美观,所以这里先做了一次缩放

最后得出的关系图

也是看了一个多月的红楼梦,今日一时想着用Python理一理之间的关系,伙伴们也可以试着理一理!有不清楚的地方,欢迎留言,不足之处,也恳请伙伴们指出!

更多的Python学习教程也会继续为大家更新!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值