因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。
基本步骤:
步骤1:确认待分析的原始变量之间是否存在较强的相关关系。可采用计算“相关系数矩阵”“巴特利特球度检验”“KMO检验”等方法检验候选数据是否适合采用因子分析。
“分析”——“降维”——“因子分析”——“描述”

步骤2:构造因子变量将原有变量综合成少数几个因子是因子分析的核心内容。根据样本数求解 因子载荷阵,因子载荷阵的求解方法:“基于主成分模型的 主成分分析法”“基于因子分析模型的 主轴因子法”“ 极大似然法”“ Alpha因子法”等。
“分析”——“降维”——“因子分析”——“抽取”

步骤3:利用旋转方式使因子变量更具有解释性,将原有变量综合为少数几个因子后,如果因子的实际含义不清,则不利于后续分析。可通过 因子旋转的方式使一个变量只在尽可能少的因子上有比较高的载荷,使得提取出的因子具有更好的解释性。
“分析”——“降维”——“因子分析”——“旋转”

步骤4:计算 因子变量得分。当因子确定后,便可计算各因子在每个样本的具体数值。以后的分析中就可以利用因子得分对样本进行分类或评价等研究,进而实现了降维和简化问题的目标。
“分析”——“降维”——“因子分析”——“得分”

因子分析适用条件:
(1)样本量不能太小,至少为变量数的5倍。
(2)各变量间应该具有相关性,如彼此独立,则无法提取公因子。 通过Bartlett球形检验来判断。
(3)KMO检验:用于考察变量间的偏相关性,取值0~1之间; KMO统计量越接近1,变量间的偏相关性越强,因子分析效果越好。一般统计量在0.7以上为适应做因子分析。<0.5则不适宜做因子分析。
(4)因子分析中各公因子 应该具有实际意义。
案列:对各省经济数据的进一步分析
在“描述”对话框中,选中“相关系数”选项组中的“KMO和Bartlett的球形度检验”复选框;在“抽取”对话框中,选中“输出”形式组中的“碎石图”复选框。


结果:
表1:KMO和巴特利特检验

可以看出显著性<0.05,拒绝各变量独立的假设,认为变量间具有较强的相关性。
表2:公因子方差

表示各变量中所含原始信息能被提取的公因子所表示的程度,即变量信息被提取的占比。
表3:总方差解释


碎石图用于显示各因子的重要程度,横坐标是因子序号,纵轴表示特征根大小。坡度越斗,对应的特征根越大,作用越明显。一般选取特征根大于1的作为因子。
表4:成分矩阵表

但上诉3个成分因子不能够很好的解释,成分因子的意义不明显,因而需要多因子进行旋转。
因子旋转

“旋转”对话框用来实现因子旋转功能,以便更好的解释提取的因子。
最常用的是:“方差最大正交旋转”,使各因子仍然保持正交的状态,但各因子的方差差异达到最大,即相对载荷平方和达到最大。

经“旋转”后,得到旋转成分矩阵。可以看出,第一公因子在GDP,工业总产值,固定资产投资,货物周转量有较大载荷系数,可定义为“总量因子”。第二公因子在职工平均工资和居民消费水平载荷系数较大,定义为“消费因子”;第三个公因子则在“居民消费价格指数”,商品价格指数上载荷系数较大,定义为“价格因子”。
因子的表达式
旋转成分矩阵中,因子结构表达式可以将各变量表示为公因子的线性形式。但我们需要公因子表达为各变量的线性形式。也称为得分因子函数。最常用的估计法为“回归法”。在“得分”复选框组中。

结果:

举例因子1的表达式
SPSS在“保存为变量”的复选框中,会自动计算出各因子得分值为新变量。
保存公因子得分进行综合评价
3个因子分别从不同方面反映当地经济发展状况的总体水平,单独使用某一公因子很难做出综合评价,因此考虑按各公因子对应的方差贡献率比例为权数计算综合得分情况。

按照公式:
从而能计算出各地区的综合得分情况。并给出合理的解释。