女生计算机应用技术还是软件,环境监测与治理技术和计算机应用,女生学哪个比较好...

满意答案

dcebd7a0de6265b6ccae5ead692f1eab.png

pcmhot

2014.07.03

dcebd7a0de6265b6ccae5ead692f1eab.png

采纳率:46%    等级:11

已帮助:5098人

环境监测比较适合女士!就业较广泛!具体工作可分为3类:①研究性监测:研究确定污染物从污染源到受体的运动过程,鉴定环境中需要注意的污染物。这类监测需要化学分析、物理测量、生物和生理生化检验技术,并涉及大气化学、大气物理、水化学、水文学、生物学、流行病学、毒理学、病理学等学科的知识。如果监测数据表明存在环境污染问题时,则必须确定污染物对人、生物和其他物体的影响。

②监视性监测:监测环境中已知有害污染物的变化趋势,评价控制措施的效果,判断环境标准实施的情况和改善环境取得的进展,建立各种监测网,如大气污染监测网、水体污染监测网,累积监测数据,据此确定一个城市、省、区域、国家,甚至全球的污染状况及其发展趋势。

③事故性监测:对事故性污染,如石油溢出事故所造成的海洋污染,核动力厂发生事故时放射性微尘所造成的大气污染等进行监测,包括用监测车或监测船的流动监测、空中监测、遥测、遥感等,确定污染范围及其严重程度,以便采取措施。按监测对象的不同,可分为大气污染监测、水质污染监测、土壤污染监测、生物污染监测等。按污染物的性质不同,可分为化学毒物监测、卫生(包括病原体、病毒、寄生虫、霉菌毒素等的污染)监测、热污染监测、噪声污染监测、电磁波污染监测、放射性污染监测、富营养化监测等。

后两种比较适合化学不好的!!看看把!而且就业广泛

00分享举报

深度习是机器习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行习和模式识别。深度习模型能够习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医图像分析等应用至关重要。以下是深度习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值