前日和12岁的儿子一起学数学。这一章是关于小数,无限循环小数是一个重点。各种循环小数与分数的切换,花式运算,不亦乐乎。
儿子突然在纸头上写了几行式子给我看:

0.999999无限循环就等于1? 不对啊,它只是无限接近1,但怎么会就等于1呢?离1不是还有一点点距离吗?即使这个距离是无限小……
我跟儿子这样争辩。
儿子笑而不语,用铅笔轻轻敲着他写的式子,一脸坏坏的得意。
对啊,他写的推演,看起来也的确是没毛病。何况公式也说了:0.XXXX无限循,就等于X除以9. 那么X如果是9, 那这个数不就等于1了吗?
数学公式和推演,证明了我的常识理解的错误,但我又不理解我的理解错在了哪里。这事奇怪了。

我本人小时虽然数学不错,但也就是高三水平,还是文科班的。自已想不清楚,只能发朋友圈求助。好,这时好戏开场了。
我的朋友圈除了偶尔晒孩有很多点赞外,从来没有这么多激情四射,用心良苦的评论的,应该是创造了“互动率”的纪录。

有意思的是十几位回复的朋友,明显站在两大阵营:
有数学和理科基础的朋友,很多支持“0.9999无限循环=1”的结论。除了上述两种实证方法之外,他们还提出其他的数学推演方法。
但其他人相信这个推演里面有偷换概念的地方,还有很专业的人说:无限循环小数不是definite number (确定数),而是一个indefinite number (不确定数),不能使用确切数的四则运算法则,不确定数有自已的计算理论。
(可是如果不能使用四则运算,那数学书里这么多运算,小数分数切来切去加加减减,不就都不成立了吗?)
也有很多人跟我一样,认为0.99999无限循环是无限接近1, 但不是1. 但他们一样无法驳倒数学推演的逻辑。
还是懵圈,于是上百度搜索。哈!原来百度知道上也是吵成一片,跟我朋友圈一样,两派意见各执一词。倒是有个观点有点意思:
0.9999无限循环是否等于1,这是一个不能成立的命题,因为前者是一个不确定的数,后者是一个确定数,二者之间不能谈“等于”的问题。
看了这么多观点,这还是我和儿子之间悬而未决的问题。昨晚回家,他兴冲冲跟我说:他问了学校老师了,0.99999无限循环就等于1.
我去问他课余的数学老师,她也说:就是等于1, 因为数学推演能证明这个结论。
听了这么多人说的不同的观点,要说确切和权威的答案,其实我也并没有。
但一些不确切的想法还是有的 --- 数学本是一个高度抽象的思维方式,演算的规则是抽象的,“极限”这样的概念更是抽象出来的。当用一个抽象的概念加诸于另一个抽象的概念时,就好像是“用数学去证明数学”,也许就会出现某种悖论或是无法解释的漏洞?
这种无法自恰的漏洞,可能是因为数学里运用了模糊和“近似”的思维方法。
比如无限循环小数与分数之间的“等值”关系,也许就是一个抽象和“近似性”思维的体现方式。比如“1/3”和“0.3333无限循环”这两个“数”,“1/3”能代表“将一个东西(数)平均一分为三”的概念,在生活之中是有能对应上的实际存在的概念的;但“0.3333无限循环”则不能代表将一分为三,只代表一个小数点后面一个3无穷延伸下去的“纯抽象概念”。所谓“3的无穷延伸”的概念,只存在于我们的想象和概念化思维之中,在生活中是找不到对应的概念的。
“1/3 = 0.33333无限循环”的论断后面有一个“等值关系”的前提,是一个更加抽象化的数学思维概念。它不去追究两个数分别代表的不同的“意义”,而用近似性的思维,假定二者都有一个“值”,之后才能划这个等号。(其实这个等号也只能说是“约等于”的关系)。
那么“0.99999无限循环=1”的论断,其实一开始就存在一个“建立等值关系”的前提。这个前提出现时,就已暗中自动运用了抽象、近似和模糊化的数学思维(因为“0.99999无限循环”不具备一个确切的“值”,你要论它是不是等值于1,其实就先决了一个条件:你运用近似性原理假定它是有一个“值”的。)
但你也可以不接受这个“等值假定”,也就是看重“0.99999无限循环”这个“数”所代表的概念(而不是“值”),那么你就不能去谈论“这个数是否等于1”这个话题,因为这个话题没有一个grounding, 也就没有了思考和讨论的可能。
(就好像科学假定宇宙的时间和空间是从大爆炸那个奇点开始的,于是你就不能提出“大爆炸之前宇宙是什么样的?”,因为大爆炸是时间的开始,没有“之前”这个概念。)
所以我暗中怀疑:“0.99999无限循环是否等于1”这个问题,可能涉及到数学原理上的某些Loophole(漏洞),也就是用数学原理去证明一个抽象的数学概念时,有可能会让这个数学概念偏离了它原始的数学概念,出现某种两边不是人的尴尬状况。
于是:
你选择相信左边还是右边,在于你的出发点和立场是怎样。
可以接受这种看起来相互矛盾的结论吗?
当然,我是一个文科生,这都是我完全不专业的臆断。要想提升一个认知高度,一定还得阅读很多数学专著才行。(可是每天忙成这样,哪有时间去找专著来读呢?)
但眼面前,就让我们与这个莫衷于是的问题和平共处吧。“Let’s live with this dilemma, until we find out more in the future.”--- 今晚要去跟儿子这么说。
其实我想让他明白的是:世上并没有那么多黑白分明的确切的答案,你所能获得的答案,往往在于你的立场。而每个人可以站在不同立场,所以很多事都可能是模糊摇摆、自相矛盾而经不起推敲的,你也不得不学会与它们共处。
但重要的不是答案,而是你有没有试图去找那个答案。一件事有没有被推敲过,it makes a big difference.
这种思维习惯,通常叫做“批判性思维”,也叫做“思辩”。
而这,正是“狐狸猎手”这个公号的主旨,所以才想到要写下来这篇笔记。
(当然各位有什么高见,也请在留言区留言,帮我们想得再明白一些也是很有帮助的,谢谢!)


