题目:学校购进白粉笔的盒数是彩色粉笔的4倍,如果白粉笔和彩色粉笔再各购进12盒,那么白粉笔的盒数是彩色粉笔的3倍,原来购进的白粉笔和彩色粉笔各多少盒?
在三、四年级遇到这样的题目时,我们都会用算术法对孩子进行教学:
彩色粉笔:(12×4-12)÷(4-3)-12=24(盒)
白粉笔:24×4=96(盒)
答:原来购进的白粉笔有96盒,彩色粉笔有24盒。
单单看这样的综合算式,我想我们的学生没有几个人能懂,那么我们先来看看这样的列式方法是怎么解析分析:
根据题意,如果彩色粉笔购进12盒,白粉笔购进12×4=48(盒),那么现在白粉笔的盒数仍是彩色粉笔的4倍,可见48-12=36(盒)就是彩色粉笔现有盒数的4-3=1(倍),所以彩色粉笔现有36÷1=36(盒),原来有36-12=24(盒),白粉笔原有24×4=96(盒)。
这就是算术法的产生过程,看完这么一段话,说实话,除了每个字都认识之外,对于它为什么要这样去建构,我相信还是有很多孩子还是完全不懂的。(在数学学习过程中,很多时候,孩子把没有遇到生字,知道这些话的意思,就以为理解了方法)
这时,我们老师也感觉到了这样的算术法,对于孩子来说是比较难理解的,于是我们就会想到了用线段图去建构它。孩子一般会画出以下的线段图。
画好线段图之后,我们发现对于解题无济于事。观察线段图,我们会发现,在这个线段图中,我们只画出了题目的前半部分,对于题目中的后半部分“白粉笔的盒数是彩色粉笔的3倍”并没有在线段图中得以体现。
后半部分该如何在线段中表示出来呢?这成为了我们画图的关键。
这时,我们要引导孩子打破对常规线段图认识,通过改变线段图的摆放位置,把白粉笔的单线分成均等的3段进行纵向排列,这样孩子既能清楚地看出它们的倍数变化,同时,也能直接从线段图中直接读出未知线段的数据。
从上面的线段图中,我们就直观地看出原来1倍的长度对应的就是12×2=24(盒)。即,彩色粉笔有24盒,白粉笔有24×4=96(盒)。
在三、四解决上述问题时,还可以有以下两种方法。
(一)借数法解题。
题目在表述时,除了出现12盒这个基础数之外,整个题目都是以关系数来进行描述的,题目中对于前后两次两种粉笔的数量都没有告知,这时,我们就可以在等量关系式的框架下利用借数进行解决。
(二)倍比法解题。
这是一道倍数问题,以倍数的变化做为题目的描述特点,我们就可以利用这样的倍数关系的变化,抓住其中不变的量进行解题。
通过读题,我们发现彩色粉笔与白粉笔的数量都发生变化,因为两种粉笔增加盒数相同,因此,它们两次的差就没有发生变化,我们抓住差不变进行解题。
当我们把差的倍数调整为一样之后,我们发现白粉笔原来有8份,现在变成了9份;彩色粉笔原来有2份,现在变成了3份,这样的1份就是12盒。
彩色粉笔有12×2=24盒,白粉笔有12×8=96(盒)。