利用matlab统计一张图中线段的数量_原来线段图还可以这样画!!!——购进的白粉笔和彩色粉笔各多少盒?...

文章探讨了如何利用matlab统计线段数量,通过一个数学问题展示了算术法和线段图在解题中的应用。文中提出传统线段图可能无法完全体现题目条件,建议使用创新的线段排列方式来更直观地表示倍数关系,从而简化问题。文章还介绍了借数法和倍比法作为辅助解题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:学校购进白粉笔的盒数是彩色粉笔的4倍,如果白粉笔和彩色粉笔再各购进12盒,那么白粉笔的盒数是彩色粉笔的3倍,原来购进的白粉笔和彩色粉笔各多少盒?

在三、四年级遇到这样的题目时,我们都会用算术法对孩子进行教学:

彩色粉笔:(12×4-12)÷(4-3)-12=24(盒)

白粉笔:24×4=96(盒)

答:原来购进的白粉笔有96盒,彩色粉笔有24盒。

单单看这样的综合算式,我想我们的学生没有几个人能懂,那么我们先来看看这样的列式方法是怎么解析分析:

根据题意,如果彩色粉笔购进12盒,白粉笔购进12×4=48(盒),那么现在白粉笔的盒数仍是彩色粉笔的4倍,可见48-12=36(盒)就是彩色粉笔现有盒数的4-3=1(倍),所以彩色粉笔现有36÷1=36(盒),原来有36-12=24(盒),白粉笔原有24×4=96(盒)。

这就是算术法的产生过程,看完这么一段话,说实话,除了每个字都认识之外,对于它为什么要这样去建构,我相信还是有很多孩子还是完全不懂的。(在数学学习过程中,很多时候,孩子把没有遇到生字,知道这些话的意思,就以为理解了方法)

这时,我们老师也感觉到了这样的算术法,对于孩子来说是比较难理解的,于是我们就会想到了用线段图去建构它。孩子一般会画出以下的线段图。

b12e5e569ae21484ddf652e3a285a49e.png

画好线段图之后,我们发现对于解题无济于事。观察线段图,我们会发现,在这个线段图中,我们只画出了题目的前半部分,对于题目中的后半部分“白粉笔的盒数是彩色粉笔的3倍”并没有在线段图中得以体现。

后半部分该如何在线段中表示出来呢?这成为了我们画图的关键。

这时,我们要引导孩子打破对常规线段图认识,通过改变线段图的摆放位置,把白粉笔的单线分成均等的3段进行纵向排列,这样孩子既能清楚地看出它们的倍数变化,同时,也能直接从线段图中直接读出未知线段的数据。

e8776f845655b6859c2dc89b7754d872.png

从上面的线段图中,我们就直观地看出原来1倍的长度对应的就是12×2=24(盒)。即,彩色粉笔有24盒,白粉笔有24×4=96(盒)。

在三、四解决上述问题时,还可以有以下两种方法。

(一)借数法解题。

题目在表述时,除了出现12盒这个基础数之外,整个题目都是以关系数来进行描述的,题目中对于前后两次两种粉笔的数量都没有告知,这时,我们就可以在等量关系式的框架下利用借数进行解决。

bcf0060c26e0addb2863436d27b61c7a.png

(二)倍比法解题。

这是一道倍数问题,以倍数的变化做为题目的描述特点,我们就可以利用这样的倍数关系的变化,抓住其中不变的量进行解题。

通过读题,我们发现彩色粉笔与白粉笔的数量都发生变化,因为两种粉笔增加盒数相同,因此,它们两次的差就没有发生变化,我们抓住差不变进行解题。

43b2f424cb2d2131b4863dd9426841f2.png

当我们把差的倍数调整为一样之后,我们发现白粉笔原来有8份,现在变成了9份;彩色粉笔原来有2份,现在变成了3份,这样的1份就是12盒。

彩色粉笔有12×2=24盒,白粉笔有12×8=96(盒)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值