bootstrap再抽样_【机器学习】Bootstrap详解

Bootstrap是一种非参数统计方法,由Bradley Efron提出,常用于统计推断和机器学习。它通过有放回的重抽样生成新样本,可以避免交叉验证带来的样本减少问题,并用于创建数据的随机性,如随机森林算法。Bootstrap能估计统计量的多种特性,如方差、中位数,不仅估计值,还能估计其精度。在资产配置问题中,Bootstrap方法可以更准确地估计风险和优化投资组合。
摘要由CSDN通过智能技术生成

Bootstrap简介Bootstrap方法是非常有用的一种统计学上的估计方法,是斯坦福统计系的教授Bradley Efron(我曾有幸去教授办公室约谈了一次)在总结、归纳前人研究成果的基础上提出一种新的非参数统计方法。Bootstrap是一类非参数Monte Carlo方法,其实质是对观测信息进行再抽样,进而对总体的分布特性进行统计推断。

因为该方法充分利用了给定的观测信息,不需要模型其他的假设和增加新的观测,并且具有稳健性和效率高的特点。1980年代以来,随着计算机技术被引入到统计实践中来,此方法越来越受欢迎,在机器学习领域应用也很广泛。

首先,Bootstrap通过重抽样,可以避免了Cross-Validation造成的样本减少问题,其次,Bootstrap也可以用于创造数据的随机性。比如,我们所熟知的随机森林算法第一步就是从原始训练数据集中,应用bootstrap方法有放回地随机抽取k个新的自助样本集,并由此构建k棵分类回归树。

具体讲解

下面我们用一个例子具体介绍bootstrap的原理和用法:

假设我们有两个金融资产X和Y,我们现在想要合理配置这两个资产,使得其资产组合的风险最小。也就是找到一个

,使得

最小。这个问题几十年前马尔可维茨已经在其投资组合理论里给出了解答,最优的

表达式如下:

但是现实生活中实际上我们并不知道

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值