算法实现
- 用2层循环,而不是递归完成归并排序;
- 外层循环 sz 表示每次 merge 的2个有序数组的长度,可以理解成步长,从1开始,1, 2, 4, 8...
- 内层循环i表示每次merge操作的起点,1次merge迈2步(2个sz),1次merge受影响的总长度为2个步长,与sz对应依次为 2, 4, 8, 16...,i 的限制是小于n - sz ,表示的意义是这次merge至少能迈出1步零1个元素;
- Math.min(i+sz+sz-1,n-1),其中n-1是指向arr最后一个元素的指针,表示的意思是,最后一次merge的第2步,能迈一个满步就迈一个满步,迈不了就迈到最后一个元素;
import java.util.*;
public class MergeSortBU{
// 我们的算法类不允许产生任何实例
private MergeSortBU(){}
// 将arr[l...mid]和arr[mid+1...r]两部分进行归并
private static void merge(Comparable[] arr, int l, int mid, int r) {
Comparable[] aux = Arrays.copyOfRange(arr, l, r+1);
// 初始化,i指向左半部分的起始索引位置l;j指向右半部分起始索引位置mid+1
int i = l, j = mid + 1;
for( int k = l ; k <= r; k ++ ){
if( i > mid ){ // 如果左半部分元素已经全部处理完毕
arr[k] = aux[j-l]; j ++;
}
else if( j > r ){ // 如果右半部分元素已经全部处理完毕
arr[k] = aux[i-l]; i ++;
}
else if( aux[i-l].compareTo(aux[j-l]) < 0 ){ // 左半部分所指元素 < 右半部分所指元素
arr[k] = aux[i-l]; i ++;
}
else{ // 左半部分所指元素 >= 右半部分所指元素
arr[k] = aux[j-l]; j ++;
}
}
}
public static void sort(Comparable[] arr){
int n = arr.length;
// Merge Sort Bottom Up 无优化版本
for (int sz = 1; sz < n; sz *= 2)
for (int i = 0; i < n - sz; i += sz+sz)
// 对 arr[i...i+sz-1] 和 arr[i+sz...i+2*sz-1] 进行归并
merge(arr, i, i+sz-1, Math.min(i+sz+sz-1,n-1));
// Merge Sort Bottom Up 优化
// 对于小数组, 使用插入排序优化
// for( int i = 0 ; i < n ; i += 16 )
// InsertionSort.sort(arr, i, Math.min(i+15, n-1) );
//
// for( int sz = 16; sz < n ; sz += sz )
// for( int i = 0 ; i < n - sz ; i += sz+sz )
// // 对于arr[mid] <= arr[mid+1]的情况,不进行merge
// if( arr[i+sz-1].compareTo(arr[i+sz]) > 0 )
// merge(arr, i, i+sz-1, Math.min(i+sz+sz-1,n-1) );
}
// 测试 MergeSort BU
public static void main(String[] args) {
// Merge Sort BU 也是一个O(nlogn)复杂度的算法,虽然只使用两重for循环
// 所以,Merge Sort BU也可以在1秒之内轻松处理100万数量级的数据
// 注意:不要轻易根据循环层数来判断算法的复杂度,Merge Sort BU就是一个反例
// 关于这部分陷阱,推荐看我的《玩转算法面试》课程,第二章:《面试中的复杂度分析》:)
int N = 1000000;
Integer[] arr = SortTestHelper.generateRandomArray(N, 0, 100000);
SortTestHelper.testSort("bobo.algo.MergeSortBU", arr);
return;
}
}