高级排序 03 归并排序 Bottom Up

算法实现

  • 用2层循环,而不是递归完成归并排序;
  • 外层循环 sz 表示每次 merge 的2个有序数组的长度,可以理解成步长,从1开始,1, 2, 4, 8...
  • 内层循环i表示每次merge操作的起点,1次merge迈2步(2个sz),1次merge受影响的总长度为2个步长,与sz对应依次为 2, 4, 8, 16...,i 的限制是小于n - sz ,表示的意义是这次merge至少能迈出1步零1个元素;
  • Math.min(i+sz+sz-1,n-1),其中n-1是指向arr最后一个元素的指针,表示的意思是,最后一次merge的第2步,能迈一个满步就迈一个满步,迈不了就迈到最后一个元素;
import java.util.*;

public class MergeSortBU{

    // 我们的算法类不允许产生任何实例
    private MergeSortBU(){}

    // 将arr[l...mid]和arr[mid+1...r]两部分进行归并
    private static void merge(Comparable[] arr, int l, int mid, int r) {

        Comparable[] aux = Arrays.copyOfRange(arr, l, r+1);

        // 初始化,i指向左半部分的起始索引位置l;j指向右半部分起始索引位置mid+1
        int i = l, j = mid + 1;
        for( int k = l ; k <= r; k ++ ){

            if( i > mid ){  // 如果左半部分元素已经全部处理完毕
                arr[k] = aux[j-l]; j ++;
            }
            else if( j > r ){   // 如果右半部分元素已经全部处理完毕
                arr[k] = aux[i-l]; i ++;
            }
            else if( aux[i-l].compareTo(aux[j-l]) < 0 ){  // 左半部分所指元素 < 右半部分所指元素
                arr[k] = aux[i-l]; i ++;
            }
            else{  // 左半部分所指元素 >= 右半部分所指元素
                arr[k] = aux[j-l]; j ++;
            }
        }
    }

    public static void sort(Comparable[] arr){

        int n = arr.length;

        // Merge Sort Bottom Up 无优化版本
        for (int sz = 1; sz < n; sz *= 2)
            for (int i = 0; i < n - sz; i += sz+sz)
                // 对 arr[i...i+sz-1] 和 arr[i+sz...i+2*sz-1] 进行归并
                merge(arr, i, i+sz-1, Math.min(i+sz+sz-1,n-1));

        // Merge Sort Bottom Up 优化
        // 对于小数组, 使用插入排序优化
//        for( int i = 0 ; i < n ; i += 16 )
//            InsertionSort.sort(arr, i, Math.min(i+15, n-1) );
//
//        for( int sz = 16; sz < n ; sz += sz )
//            for( int i = 0 ; i < n - sz ; i += sz+sz )
//                // 对于arr[mid] <= arr[mid+1]的情况,不进行merge
//                if( arr[i+sz-1].compareTo(arr[i+sz]) > 0 )
//                    merge(arr, i, i+sz-1, Math.min(i+sz+sz-1,n-1) );

    }

    // 测试 MergeSort BU
    public static void main(String[] args) {

        // Merge Sort BU 也是一个O(nlogn)复杂度的算法,虽然只使用两重for循环
        // 所以,Merge Sort BU也可以在1秒之内轻松处理100万数量级的数据
        // 注意:不要轻易根据循环层数来判断算法的复杂度,Merge Sort BU就是一个反例
        // 关于这部分陷阱,推荐看我的《玩转算法面试》课程,第二章:《面试中的复杂度分析》:)
        int N = 1000000;
        Integer[] arr = SortTestHelper.generateRandomArray(N, 0, 100000);
        SortTestHelper.testSort("bobo.algo.MergeSortBU", arr);

        return;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值