poj 2888 Magic Bracelet

http://poj.org/problem?id=2888

POJ2888——Pólya思想+数论+动规+矩阵快速幂(经典)

置换问题的关键在于降低枚举置换的复杂度和找不动点的复杂度。

和基础的置换不同在于每个环内部不能无脑填相同的颜色了。

但是枚举环还是基本思路一定是要枚举的。

考虑降低枚举置换的复杂度:

环只和gcd有关,枚举gcd一起统计。

把上面的换成下面的。枚举gcd

由于根号的分解不是满的,所以复杂度会降低。

 

 对于每个置换的不动点个数:
即每隔i个都相等。

所以直接分成i条,然后矩阵快速幂优化dp即可。

转移矩阵的i次幂算出来,

再枚举第一个填j颜色,对应乘起来就是整个第j行的值,选择不会和最后一个冲突的值加起来即可。

O(10^3logn*sqrt(n))

可以过。

 

启示我们,不动点的个数不一定要按照环来统计

也可以每i个看成一个段来统计

置换相同的一起枚举。考虑环,不动点在条件下进行计算。

 

转载于:https://www.cnblogs.com/Miracevin/p/10221881.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>