「POJ 2888」Magic Bracelet

传送门


problem

m m m 种颜色对长度为 n n n 的环染色,有 k k k 个限制,每个限制 ( a , b ) (a,b) (a,b) 表示颜色 a , b a,b a,b 不能相邻,求不同的染色方案数。

定义两种方案相同当且仅当其中一个方案可以经过若干次旋转而变成另一个方案。

答案对 9973 9973 9973 取模(保证 gcd ⁡ ( n , 9973 ) = 1 \gcd(n,9973)=1 gcd(n,9973)=1)。

数据范围: 1 ≤ n ≤ 1 0 9 1 ≤ n ≤ 10^9 1n109 1 ≤ m ≤ 10 1 ≤ m ≤ 10 1m10 1 ≤ k ≤ m ( m − 1 ) 2 1 ≤ k ≤ \frac{m(m-1)}2 1k2m(m1)


solution

这道题由于有限制,不能直接用 Polya 定理,考虑 Burnside 引理。

对于第 i i i 种置换(即旋转 i i i 次),循环数是 gcd ⁡ ( n , i ) \gcd(n,i) gcd(n,i),由于每个循环内的点涂的颜色必须相同,我们只需要考虑前 gcd ⁡ ( n , i ) \gcd(n,i) gcd(n,i) 个点的涂色即可。

那么这部分和「TJOI 2019」甲苯先生的字符串 这题很像,就是设计一个 d p dp dp 然后矩阵乘法优化即可。

但是有一个细节,就是第 gcd ⁡ ( n , i ) \gcd(n,i) gcd(n,i) 个点的涂色和第 1 1 1 个点的涂色有关,解决方法就是,枚举 1 1 1 的颜色 k k k,我们不在 gcd ⁡ ( n , i ) \gcd(n,i) gcd(n,i) 的地方统计答案,而在 gcd ⁡ ( n , i ) + 1 \gcd(n,i)+1 gcd(n,i)+1 的地方统计涂色为 k k k 的方案数。

这样的话,一个置换的复杂度是 O ( m 3 log ⁡ n ) O(m^3\log n) O(m3logn),总复杂度是 O ( n m 3 log ⁡ n ) O(nm^3\log n) O(nm3logn),还得优化。

优化思路就是「POJ 2154」Color 这道题,我们不用枚举置换算答案,用 φ \varphi φ 来优化即可。

时间复杂度 O ( m 3 n log ⁡ n ) O(m^3\sqrt n\log n) O(m3n logn)

PS:这答题比较卡常,取模次数不要太多。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=4e4+5,P=9973;
int n,m,k;
int add(int x,int y)  {return x+y>=P?x+y-P:x+y;}
int dec(int x,int y)  {return x-y< 0?x-y+P:x-y;}
int mul(int x,int y)  {return 1ll*x*y>=P?1ll*x*y%P:x*y;}
int power(int a,int b){
	int ans=1;
	for(;b;b>>=1,a=mul(a,a))  if(b&1)  ans=mul(ans,a);
	return ans;
}
struct matrix{
	int M[15][15];
	matrix(int t=0){
		memset(M,0,sizeof(M));
		for(int i=1;i<=m;++i)  M[i][i]=t;
	}
	friend matrix operator*(const matrix &A,const matrix &B){
		matrix C(0);
		for(int i=1;i<=m;++i)
			for(int k=1;k<=m;++k)
				for(int j=1;j<=m;++j)
					C.M[i][j]+=A.M[i][k]*B.M[k][j],C.M[i][j]%=P;
		return C;
	}
	friend matrix operator^(matrix A,int B){
		matrix ans(1);
		for(;B;B>>=1,A=A*A)  if(B&1)  ans=ans*A;
		return ans;
	}
}A;
int sum,prime[N],mark[N];
void linear_sieves(){
	for(int i=2;i<N;++i){
		if(!mark[i])  prime[++sum]=i;
		for(int j=1;j<=sum&&i*prime[j]<N;++j){
			mark[i*prime[j]]=1;
			if(i%prime[j]==0)  break;
		}
	}
}
int phi(int n){
	int ans=n;
	for(int i=1;prime[i]*prime[i]<=n;++i){
		if(n%prime[i]==0){
			ans=ans/prime[i]*(prime[i]-1);
			while(n%prime[i]==0)  n/=prime[i];
		}
	}
	if(n!=1)  ans=ans/n*(n-1);
	return ans%P;
}
void init(){
	for(int i=1;i<=m;++i)
		for(int j=1;j<=m;++j)  A.M[i][j]=1;
	for(int i=1,x,y;i<=k;++i){
		scanf("%d%d",&x,&y);
		A.M[x][y]=A.M[y][x]=0;
	}
}
int solve(int x,int ans=0){
	matrix B=A^x;
	for(int i=1;i<=m;++i)  ans=add(ans,B.M[i][i]);
	return ans;
}
int main(){
	int T;
	scanf("%d",&T);
	linear_sieves();
	while(T--){
		int ans=0;
		scanf("%d%d%d",&n,&m,&k),init();
		for(int i=1;i*i<=n;++i){
			if(n%i==0){
				ans=add(ans,mul(solve(i),phi(n/i)));
				if(i*i!=n)  ans=add(ans,mul(solve(n/i),phi(i)));
			}
		}
		printf("%d\n",mul(ans,power(n,P-2)));
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值