常微分方程_阿诺尔德 1.1节,问题2

一个由所有实数组成的集合$(t\in\mathbf{R})$所标记的,由集合$M$到它自身的映射族$\{g^t\}$称为$M$的单参数变换群,如果对于所有的$s,t\in\mathbf{R}$满足
\begin{equation}
\label{eq:26.21.07}
g^{t+s}=g^tg^s
\end{equation}
而且$g^0$是恒等映射(它使每点固定).证明单参数变换群是交换群,且每个映射$g^t:M\to M$是一对一的.


证明:首先,单参数变换群有恒等映射作为乘法单位元,而且,由\ref{eq:26.21.07}可知满足乘法结合律,而且每个元素$g^t$都存在逆元$g^{-t}$.而且,易得$g^tg^s=g^{t+s}=g^{s+t}=g^sg^t$.因此是交换群.


下面证明$g^t$是單射,这是因为对于任意$t$来说,$g^t$都有逆映射,因此$g^t$必为单射(为什么?).

转载于:https://www.cnblogs.com/yeluqing/archive/2012/10/26/3828231.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值