线代学习笔记二

1、含有n个未知数的线性方程组Ax=b: (1)无解 则$R(A)<R(\bar{A})=R(A,b)$; (2)唯一解,则$R(A)=R(\bar{A})=n$;(3)无穷多解,则$R(A)=R(\bar{A})<n$。

2、向量组A:$a_{1},a_{2},...,a_{n}$,B:$\beta _{1},\beta_{2},...,\beta_{n}$。
(1)若B中每个向量都可以由A线性表示,则称B能由A线性表示。若可以互相线性表示,则称AB等价。
(2)B能由A线性表示的充要条件是矩阵$A=(a _{1},a_{2},...,a_{n})$的秩等于矩阵$(A,B)=(a _{1},a_{2},...,a_{n},\beta_{1},\beta_{2},...,\beta_{n})$的秩。
(3)AB等价则R(A)=R(B)=R(A,B)
(4)B能由A表示则$R(B)\leq R(A)$。

3、线性相关:
(1)设由向量组$a_{1},a_{2},...,a_{n}$构成的矩阵$A=(a _{1},a_{2},...,a_{n})$,则向量组线性相关的充要条件为$R(A)<n$;线性无关则$R(A)=n$
(2)n个m维向量组成的向量组,当m&lt;n时必线性相关。
(3)向量组线性相关仅当至少有一个可由其他n-1个线性表示。线性无关则任意一个都不能由其他的n-1个线性表示。

4、向量组的秩:
(1)向量组A中取出r个向量$A=(a _{1},a_{2},...,a_{r})$组成的向量$A_{0}$满足$A_{0}$线性无关且任取出r+1个组成的向量都线性相关,则称$A_{0}$为A的最大线性无关组,r=$R_{A}$。
(2)线性无关组一般不唯一,且任一最大线性无关组与A等价,任意两个线性无关组等价。

5、线性方程组的解:
(1)Ax=0的一组解$\varepsilon _{1},\varepsilon _{2},,...,\varepsilon _{t}$满足线性相关且任意一组解都能表示成它们的线性组合,则称其为Ax=0的一个基础解系。
(2)Ax=0,R(A)=r<n,则基础解系中有n-r个向量。
(3)Ax=b的通解,为Ax=0的基础解系加上Ax=b的一个特解。

6、向量内积:
(1)$\alpha^{T} =(a_{1},a_{2},...,a_{n}),\beta^{T}=(b_{1},b_{2},...,b_{n})$,则称$[\alpha,\beta]=\sum_{i=1}^{n}a_{i}b_{i}$为$\alpha,\beta$ 的内积。
(2)施瓦茨不等式:$[\alpha,\beta]^{2}\leq [\alpha,\alpha][\beta,\beta]$
(3)记||a||=$\sqrt{[\alpha,\alpha]}$=$\sqrt{a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}}$为向量a的长度。
(4)$||\alpha+\beta||\leq ||\alpha||+||\beta||$
(5)$\left | \left \| \alpha \right \|-\left \| \beta \right \| \right | \leq \left \| \alpha-\beta \right \|$
(6)若$[\alpha,\beta]=0$,则称$\alpha,\beta$正交。两两正交的向量组称为正交向量组。正交向量组线性无关。
7、施密特正交化:设$\alpha_{1},\alpha_{2},...,\alpha_{n}$线性无关,得到一组$\beta_{1},\beta_{2},...,\beta_{n}$,其中,$\beta_{1}=\alpha_{1}$,$\beta_{r}=\alpha_{r}-\sum_{i=1}^{r-1}\frac{[\beta_{i},\alpha_{r}]}{[\beta_{i},\beta_{i}]}\beta_{i}$,$\beta_{1},\beta_{2},...,\beta_{n}$是一个正交向量组。
8、正交矩阵:
(1)若n阶方阵A满足$AA^{T}=A^{T}A=E$,则A称作正交矩阵。
(2)A是正交矩阵的充要条件是列向量都是单位矩阵,且两两正交。
(3)正交矩阵的逆等于转置,且逆和转置仍是正交矩阵,两个正交矩阵的乘积仍是正交矩阵,行列式等于$\underline{+}1$

9、特征值和特征向量:
(1)若存在数$\lambda $和非零向量x满足$Ax=\lambda x $,则称$\lambda$为A的特征值,x为对应于$\lambda$的特征向量。
(2)设$\lambda_{1},\lambda_{2},...\lambda_{n}$为A的特征值,则$\prod_{i=1}^{n}\lambda_{i}=|A|,\sum_{i=1}^{n}\lambda_{i}=\sum_{i=1}^{n}a_{ii}$
(3)A可逆,$\lambda$为A的特征值,那么$\lambda\neq 0,\frac{1}{\lambda}$是$A^{-1}$的特征值,$A^{*}$的特征值为$\frac{|A|}{\lambda}$.
(4)若特征向值各不相同,则特征向量线性无关。
10、相似矩阵:
(1)存在可逆矩阵P使得$P^{-1}AP=B$,那么称AB相似。
(2)相似矩阵秩相等。
(3)AB相似,则$A-\lambda E$与$B-\lambda E$相似,A的逆与B的逆相似,且AB的特征多项式和特征值都相等。
(4)A有n个线性无关的特征向量,则存在P使得$P^{-1}AP=\Lambda $,$\Lambda$为对角阵。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值