- 博客(5)
- 收藏
- 关注
原创 线代笔记4
这节分清楚子空间的基和子空间的维数首先关于基有两点: 1.最小生成集,多删一个都不能生成空间V 2.最大线性无关集,多加一个都会线性相关。 空间的维数,即表达这个空间所需要的最少的基向量的个数。列空间的基是主元列所对应的列向量,零空间的基是非主元列对应的自由变量所对应的参数向量所以求列空间和零空间的基直接把系数矩阵或增广矩阵按初等行变
2016-04-19 21:12:17
1704
原创 线代笔记3
对应于系数矩阵初等变换后,对应于主元列的变量,称为基本变量,对应非主元列的变量称为自由变量基本变量可以表示成自由变量的线性组合,也就是说,自由变量之间是线性无关的可以被自由变量表示的基本变量和自由变量之前是线性相关的,自由变量之间是线性无关的,因为把基本变量右移,就成了一个系数不为零的齐次方程。比如x1=x3+x5,变量右移后变成x3+x5-x1=0,系数分别是1,1,-1,不全为0,所以
2016-04-19 21:11:56
3955
原创 线代笔记2
可逆=行列式不为零=满秩=齐次方程只有零解=线性无关线性无关的意思是:向量之间没有任何关系,谁也不能表示谁,谁也不能被谁表示,向量前的系数都是零在高斯消元过程中,会出现方程组中若干个方程被消去的情况,剩下的方程个数称为r,称为线性方程组的秩。这r个方程可以表示原方程组中的所有方程,并且这r个方程不能再减少。方程组的个数就是系数矩阵的秩rr=n方程个数等于未知数个数,有唯
2016-04-19 21:11:01
4134
原创 线代笔记1
n元齐次方程方程组的解空间(秩r)是Rn上的n-r维的子空间。解空间(零空间)是系数矩阵A行空间的正交补。正交补的意思是,n维空间里的两个子空间正交,且两个子空间原点重合起来刚好成张成n维空间。将矩阵A看作行向量则矩阵方程Ax=0可以理解为任意解向量与行向量正交(因为内积为0)而这些行向量可以张成子空间,但是只有线性无关的向量才可以作为基向量张成子空间:若三个行向量线性无关
2016-04-19 21:09:37
1041
原创 傅里叶变换和线性空间
金庸在他的武侠小说《天龙八部》里塑造了一个吐蕃国师的人物形象——“鸠摩智”。鸠摩智练武急功近利,为了在短期内多炼成几门功夫,往往基础不打牢,就强行修炼上乘武学。用道家的小无相功催动少林的七十二绝技,看似威力无比,其实后患无穷。
2016-04-13 14:56:13
4079
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人