---恢复内容开始---
题目描述
随着智能手机的日益普及,人们对无线网的需求日益增大。某城市决定对城市内的公共 场所覆盖无线网。 假设该城市的布局为由严格平行的129条东西向街道和129条南北向街道所形成的网格 状,并且相邻的平行街道之间的距离都是恒定值 1。东西向街道从北到南依次编号为 0,1,2…128,南北向街道从西到东依次编号为 0,1,2…128。 东西向街道和南北向街道相交形成路口,规定编号为 x 的南北向街道和编号为 y 的东西 向街道形成的路口的坐标是(x, y)。在某些路口存在一定数量的公共场所。 由于政府财政问题,只能安装一个大型无线网络发射器。该无线网络发射器的传播范围 是一个以该点为中心,边长为 2*d 的正方形。传播范围包括正方形边界。 例如下图是一个 d = 1 的无线网络发射器的覆盖范围示意图。
现在政府有关部门准备安装一个传播参数为 d 的无线网络发射器,希望你帮助他们在城 市内找出合适的安装地点,使得覆盖的公共场所最多。
输入格式
第一行包含一个整数 d,表示无线网络发射器的传播距离。
第二行包含一个整数 n,表示有公共场所的路口数目。
接下来 n 行,每行给出三个整数 x, y, k, 中间用一个空格隔开,分别代表路口的坐标(x, y) 以及该路口公共场所的数量。
同一坐标只会给出一次。
输出格式
输出一行,包含两个整数,用一个空格隔开,分别表示能覆盖最多公共场所的安装地点 方案数,以及能覆盖的最多公共场所的数量。
样例君
输入
1
2
4 4 10
6 6 20
输出
1 30
对于 100%的数据,1 ≤ d ≤ 20,1 ≤ n ≤ 20, 0 ≤ x ≤ 128, 0 ≤ y ≤ 128, 0 < k ≤ 1,000,000。
蒟蒻吐槽
我们可以发现一道良心题的重要标志,就是x,y≤ 128,所以,想到了什么?枚举!枚举发射器的位置然后求最大覆盖数就可以了。最大覆盖数怎么求呢?二维前缀和搞一下就ok了。
另外,注意,不开long long见祖宗!!
代码
#include<cstdio> #include<algorithm> using namespace std; const int N=200; long long ans=-1,anss,sum[N][N]; int num,summ,a[N][N]; inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int main() { freopen("wireless.in","r",stdin); freopen("wireless.out","w",stdout); int d,n,x,y; d=read();n=read(); for(int i=1;i<=n;++i) { x=read()+d+1;y=read()+d+1; a[x][y]=read(); } n=129+d*2; for(int i=1;i<=n;++i) { summ=0; for(int j=1;j<=n;++j) { if(a[i][j])summ+=a[i][j]; sum[i][j]=sum[i-1][j]+summ; } } for(int i=1+d;i<=n-d;++i) for(int j=1+d;j<=n-d;++j) { anss=sum[i+d][j+d]-sum[i-d-1][j+d]-sum[i+d][j-d-1]+sum[i-d-1][j-d-1]; if(ans<anss){num=1;ans=anss;} else if(ans==anss)num++; } printf("%d %lld",num,ans); return 0; }
---恢复内容结束---