前几天无意中跟人谈起这个问题的时候有了点分歧.
分歧点在于:,扣除一切逃跑,断线,强退的特殊情况后,所有玩家的平均胜率是不是应该等于 50%
对方的答案是等于,而我的答案是不等于.
假设有三个玩家一起玩了m局游戏,其中地主胜局数x, 农民胜局数y, (x+y = m)
那么简单得到所有玩家的平均胜率 p = (x+2y)/3m = (x+2y)/(3x+3y)
通过分析单调性,可得知,当x 在 [0,m] 上变化的时候, p的值也从 2/3 逐渐递减至 1/3, 当且仅当 x = y 时
p = 1/2;
于是这个问题可以转化为,斗地主游戏中,地主与农民,双方获胜机会是否均等
其实前面的数学推导完全可以换成这样直观的理解:当地主胜率超过50%的时候,会导致多出50%的那一部分局数中,每一局都产生 2个败场,一个胜场,从而导致所有玩家的总胜场低于总败场,于是所有玩家的平均胜率就低于50%,反之则高于50%.
那地主与农民,到底哪一方占优势呢....这个问题很难用数学推算得出, 先说说我的直观感受得到的答案:谁占优不知道,但是肯定不相等
地主一方多三张牌,并且最先出牌, 农民两个人, 后出牌, 要使两方获胜概率均等, 必须保证 地主一方多三张牌+ 先出牌 获得的额外优势 等价于 农民多一个人的额外优势...这么不对称的数学模型,要让他们的概率等价,是很难让人信服的,所以要么农民优势大,要么地主优势大,精确相等的情况基本可以排除.
最后再说说人对于当不当地主的选择情况,前面都是假设每个玩家当地主的概率都是三分之一,并且与手牌是否足够好是完全独立的事件,而实际游戏中,玩家是先看见手牌,再决定是否叫地主,即手牌不够好,于是决定不叫地主,从而导致最后当地主的一方手牌往往更好,于是地主获胜概率又有所提升.这本质上是一个负反馈的过程.如果每个人都可以绝对理性的决定自己是否当地主,理论上是可以通过这个负反馈过程把双方的胜率平衡至50%的. 但是就目前我们在这里连地主农民到底哪一方优势更大都无法得出数学解的情况下,每个人能在短短时间内决定自己是否当地主,决定因素必然充斥着各种感性因子,so,再按照机器学习的理论,除非这个人玩的局数足够多,否则他对于自己是否应该当地主的判断是很难接近真正的最优判断的.
额,扯了那么多,最后还是上一组数据吧,按照网上流传的数据
QQ游戏地主胜率为:47.2%
可以得出所有玩家的平均胜率 是 50.9%
PS
看来广大地主玩家果断还是太高估自己了啊~牌不够好不要乱叫啊~~当个农民有什么不好- -!.