当前搜索:

区块链——据说现在这玩意很火?

随着比特币被大家知晓,区块链(blockchain)这个词汇也越来越火热,各种媒体不管是懂的还是不懂的都大肆报道,一时间这个东西被传的神乎其神,区块链到底是什么呢?其实他并没有我们想象的那么复杂, 他的本质其实就是数据库,是的没有错,他是一种特殊的分布式数据库。区块链的主要作用是储存信息。任何需要...
阅读(147) 评论(0)

python——wxpy模块实现微信尬聊(基于图灵机器人)

wxpy(微信机器人)是在itchat基础上开发的微信个人功能服务API,基本可以实现微信各种拓展功能,API文档http://wxpy.readthedocs.io/zh/latest/index.html项目主页https://github.com/youfou/wxpy支持pip安装,适用2...
阅读(293) 评论(1)

人工智障学习笔记——强化学习(5)DRL与DQN

在普通的Q-learning中,当状态和动作空间是离散且维数不高时可使用Q-Table储存每个状态动作对的Q值,而当状态和动作空间是高维连续时,Q-Table则不再适用。通常做法是把Q-Table的更新问题变成一个函数拟合问题,相近的状态得到相近的输出动作。通过更新参数θ使Q函数逼近最优Q值:Q(...
阅读(309) 评论(0)

人工智障学习笔记——强化学习(4)时间差分方法

前两章我们学习了动态规划DP方法和蒙特卡洛MC方法,DP方法的特性是状态转移,状态值函数的估计是自举的(bootstrapping),即当前状态值函数的更新依赖于已知的其他状态值函数。MC方法的特性是不需要环境模型,状态值函数的估计是相互独立的,但同时又依赖episode tasks。为了解决即不...
阅读(305) 评论(0)

人工智障学习笔记——强化学习(3)蒙特卡洛方法

上一章我们了解了马尔可夫决策过程的动态规划方法,但是动态要求一个完全已知的环境模型,这在现实中是很难做到的。另外,当状态数量较大的时候,动态规划法的效率也将是一个问题。所以本章我们引用一种不需要完整的环境模型的方法概念——蒙特卡罗方法。蒙特卡洛是一个赌城的名字。又叫统计模拟方法,它使用随机数(或伪...
阅读(353) 评论(0)

人工智障学习笔记——强化学习(2)基于模型的DP方法

上一章我们引入了马尔科夫决策过程的概念:马尔可夫决策过程是一个五元组(S,A,P(),R(),γ) 其中:1)S是一组有限的状态,即状态集 (states)2)A是一组有限的行为(或者,As 是从状态可用的有限的一组行动s),即动作集 (Action)3)Pa(s,s')=Pr(st+1=s'mi...
阅读(337) 评论(0)

人工智障学习笔记——强化学习(1)马尔科夫决策过程

概念马尔可夫决策过程(MDP)是基于马尔可夫过程理论的随机动态系统的最优决策过程。指决策者周期地或连续地观察具有马尔可夫性的随机动态系统,序贯地作出决策。即根据每个时刻观察到的状态,从可用的行动集合中选用一个行动作出决策,系统下一步(未来)的状态是随机的,并且其状态转移概率具有马尔可夫性。决策者根...
阅读(419) 评论(0)

人工智障学习笔记——深度学习(4)生成对抗网络

概念 生成对抗网络(GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。判别模型比较好理解,就像分类一样,有一...
阅读(562) 评论(0)

人工智障学习笔记——深度学习(3)递归神经网络

传统的神经网络模型中,输入层到隐含层再到输出层他们的层与层之间是全连接的,但是每层之间的节点是无连接的。这样就会造成一个问题,有些情况,每层之间的节点可能是存在某些影响因素的。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。而递归神经网络就能很好的...
阅读(890) 评论(0)

人工智障学习笔记——深度学习(2)卷积神经网络

上一章最后提到了多层神经网络(deep neural network,DNN),也叫多层感知机(Multi-Layer perceptron,MLP)。当下流行的DNN主要分为应对具有空间性分布数据的CNN(卷积神经网络)和应对具有时间性分布数据的RNN(递归神经网络,又称循环神经网络)。概念CN...
阅读(1069) 评论(0)

人工智障学习笔记——深度学习(1)神经网络

一.神经网络 我们所说的深度学习,其最基础最底层的模型称之为"神经网络"(neural network),因为我们希望机器能够像我们人类大脑的神经网络处理事件一样去解决问题,最终达到"人工智能"的效果。 二.神经元 神经网络的基本单位叫做神经元,是我们人...
阅读(751) 评论(0)

人工智障学习笔记——机器学习(16)降维小结

机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的...
阅读(826) 评论(0)

人工智障学习笔记——机器学习(15)t-SNE降维

一.概念 t-SNE(t分布随机邻域嵌入)是一种用于探索高维数据的非线性降维算法。它将多维数据映射到适合于人类观察的两个或多个维度。 t-SNE主要包括两个步骤:第一、t-SNE构建一个高维对象之间的概率分布,使得相似的对象有更高的概率被选择,而不相似的对象有较低的概率被选择。第二,t-SNE...
阅读(867) 评论(0)

人工智障学习笔记——机器学习(14)mds&isomap降维

一.概念 MDS(多维缩放)降维是一组对象之间的距离的可视化表示,也可以当做一种无监督降维算法使用。而Isomap(等度量映射)是在MDS算法的基础上衍生出的一种非迭代的全局优化算法,它是一种等距映射算法,也就是说降维后的点,两两之间距离不变,这个距离是测地距离。 二.算法 MDS算法的思想...
阅读(912) 评论(0)

人工智障学习笔记——机器学习(13)LLE降维

一.概念 LLE:Locally linear embedding(局部线性嵌入算法)是一种非线性降维算法,它能够使降维后的数据较好地保持原有流形结构。LLE可以说是流形学习方法最经典的工作之一。和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由于LL...
阅读(1112) 评论(0)

人工智障学习笔记——机器学习(12)LDA降维

一.概念 LDA:Linear Discriminant Analysis (也有叫做Fisher Linear Discriminant)。与PCA一样,是一种线性降维算法。不同于PCA只 会选择数据变化最大的方向,由于LDA是有监督的(分类标签),所以LDA会主要以类别为思考因素,使得投影后的...
阅读(929) 评论(0)

人工智障学习笔记——机器学习(11)PCA降维

一.概念 Principal Component Analysis(PCA):主成分分析法,是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中表示,即把原先的n个特征用数目更少的m个特征取代,新特征是旧特征的线性组合。并期望在所投影的维度上数据的方差最大,尽量使新的...
阅读(1169) 评论(0)

人工智障学习笔记——机器学习(10)AP聚类

一.概念  Affinity Propagation (AP) 聚类是2007年在Science杂志上提出的一种新的基于数据点间的"信息传递"的一种聚类算法。与k-均值算法或k中心点算法不同,AP算法不需要在运行算法之前确定聚类的个数。AP算法寻找的"examplar...
阅读(989) 评论(0)

人工智障学习笔记——机器学习(9)最大期望算法

一.概念 最大期望算法,也就是著名的em算法,他起源于一条dog……
阅读(1072) 评论(0)

人工智障学习笔记——机器学习(8)K均值聚类

一.概念 K均值聚类(K-means)是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用...
阅读(1094) 评论(0)
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 22万+
    积分: 4044
    排名: 9589
    博客专栏
    最新评论