九日王朝

——他只是一个宝宝,你们不要欺负他。

C++ 封装DLL遇到的一些坑爹问题与解决方案

一.string类型不兼容 这个算是最常见也是最初级的问题了,为了方便跨语言接口调用,如果数据量不是特别大的话,我们可以在封装DLL时选择json串来作为方法的引入参数和返回值,但由于C++的string类型(其实是STL)内存分配器兼容性很滑稽,基本上跨平台调用就一定会出现异常。所以要避免在动...

2018-12-13 13:27:45

阅读数:112

评论数:0

人工智障学习笔记——梯度下降(2)优化算法

四、优化 4-1 Momentum 如果我们把梯度下降法当作小球从山坡到山谷的一个过程,那么在小球滚动时是带有一定的初速度,在下落过程,小球积累的动能越来越大,小球的速度也会越滚越大,更快的奔向谷底,受此启发就有了动量法 Momentum。 动量的引入是为了加速SGD的优化过程。分析上式...

2018-08-21 14:01:27

阅读数:152

评论数:0

人工智障学习笔记——梯度下降(1)基础变种

一、概念 梯度下降法(gradient descent)是一个最优化算法,常用于机器学习和人工智能当中用来递归性地逼近最小偏差模型。梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent...

2018-08-21 12:18:03

阅读数:151

评论数:0

redis——redis主从复制

和MySQL主从复制的原因一样,Redis虽然读取写入的速度都特别快,但是也会产生读压力特别大的情况。为了分担读压力,Redis支持主从复制,Redis的主从结构可以采用一主多从或者级联结构,Redis主从复制可以根据是否是全量分为全量同步和增量同步。一、概念主从复制,是指将一台Redis服务器的...

2018-07-11 18:40:28

阅读数:211

评论数:2

keras——基于神经网络的风格迁移生成艺术字

Keras是一个高层神经网络API,由纯Python编写而成,至少依赖Tensorflow、Theano、CNTK一种神经网络框架,这里建议用Tensorflow。Keras的特性:1.简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)2.支持CNN和RNN,或二者的结合3.无缝...

2018-06-15 18:52:08

阅读数:556

评论数:0

python——Web服务开发(二)分布式缓存

上一篇博客写了flask模块实现web服务搭建的基本方法以及简单的缓存功能,但是这种缓存随着服务重启便会丢失,也无法满足多个服务共享缓存的需求,因此,我们通过redis来实现web服务的分布式缓存。import redis client = redis.StrictRedis(host=&...

2018-06-11 10:58:36

阅读数:477

评论数:0

python——Web服务开发(一)Flask模块

flask的诞生于2010年的愚人节,本来它只是作者无意间写的一个小玩具,没想到它却悄悄流行起来了。漫长的8年时间,flask一直没有发布一个严肃的正式版本,但是却不能阻挡它成了github上最受好评的Python Web框架。现在flask终于发布了1.0正式版本,虽然也没什么卵用,不过还是可以...

2018-06-08 11:30:10

阅读数:574

评论数:0

python——PIL模块实现图片转字符画

以前发过基于PIL模块实现其他图像处理的文章https://blog.csdn.net/sm9sun/article/details/77703551今天偶尔在网上看到了一些关于图片转换成字符画的相关内容。其实这个也蛮简单的,无非就是把原画本身的颜色映射成不同的字符,字符可以按照填充系数排列(比如...

2018-05-25 14:09:04

阅读数:581

评论数:1

国家宝藏——SM国密算法

- --首先先放几张图偶然见在国家宝藏节目看到了SM算法,由于名字奇特,所以倍感好奇于是百度了一波。其实就是国家密码局认定的国产密码算法。名字为SMX(X=1,2,3,4……)当然这个名字的由来没有你们想象的那么邪恶,或许他只是一个优秀的人名缩写吧,比如说宋明旭什么的……这样的国产国密算法有很多种...

2018-05-16 10:46:33

阅读数:1978

评论数:0

redis——redis事务相关处理

事务Redis事务的相关命令有MULTI,EXEC,DISCARD,WATCH。它们允许在一个步骤中执行一组命令,并有两个重要的保证:事务中的所有命令都会被序列化并按顺序执行。在执行Redis事务的过程中,不会发生由另一个客户端发出的请求被服务的情况。这保证命令作为一个单独的隔离的操作被执行。无论...

2018-05-14 15:31:45

阅读数:347

评论数:0

redis——redis持久化处理

Redis持久性Redis主要分为三种持久性策略:1、RDB持久性:以指定的时间间隔执行数据集的时间点快照。2、AOF持久性:记录服务器接收到的每个写入操作,这些操作将在服务器启动时再次执行,重建原始数据集。使用与Redis协议本身相同的格式以追加方式记录命令。Redis可以在日志变得太大时在后台...

2018-05-08 11:43:25

阅读数:358

评论数:0

区块链——据说现在这玩意很火?

随着比特币被大家知晓,区块链(blockchain)这个词汇也越来越火热,各种媒体不管是懂的还是不懂的都大肆报道,一时间这个东西被传的神乎其神,区块链到底是什么呢?其实他并没有我们想象的那么复杂, 他的本质其实就是数据库,是的没有错,他是一种特殊的分布式数据库。区块链的主要作用是储存信息。任何需要...

2018-04-16 15:59:24

阅读数:478

评论数:0

python——wxpy模块实现微信尬聊(基于图灵机器人)

wxpy(微信机器人)是在itchat基础上开发的微信个人功能服务API,基本可以实现微信各种拓展功能,API文档http://wxpy.readthedocs.io/zh/latest/index.html项目主页https://github.com/youfou/wxpy支持pip安装,适用2...

2018-03-28 13:37:09

阅读数:5508

评论数:10

人工智障学习笔记——强化学习(5)DRL与DQN

在普通的Q-learning中,当状态和动作空间是离散且维数不高时可使用Q-Table储存每个状态动作对的Q值,而当状态和动作空间是高维连续时,Q-Table则不再适用。通常做法是把Q-Table的更新问题变成一个函数拟合问题,相近的状态得到相近的输出动作。通过更新参数θ使Q函数逼近最优Q值:Q(...

2018-03-19 15:12:52

阅读数:794

评论数:0

人工智障学习笔记——强化学习(4)时间差分方法

前两章我们学习了动态规划DP方法和蒙特卡洛MC方法,DP方法的特性是状态转移,状态值函数的估计是自举的(bootstrapping),即当前状态值函数的更新依赖于已知的其他状态值函数。MC方法的特性是不需要环境模型,状态值函数的估计是相互独立的,但同时又依赖episode tasks。为了解决即不...

2018-03-13 15:13:54

阅读数:805

评论数:0

人工智障学习笔记——强化学习(3)蒙特卡洛方法

上一章我们了解了马尔可夫决策过程的动态规划方法,但是动态要求一个完全已知的环境模型,这在现实中是很难做到的。另外,当状态数量较大的时候,动态规划法的效率也将是一个问题。所以本章我们引用一种不需要完整的环境模型的方法概念——蒙特卡罗方法。蒙特卡洛是一个赌城的名字。又叫统计模拟方法,它使用随机数(或伪...

2018-03-07 13:31:54

阅读数:1253

评论数:0

人工智障学习笔记——强化学习(2)基于模型的DP方法

上一章我们引入了马尔科夫决策过程的概念:马尔可夫决策过程是一个五元组(S,A,P(),R(),γ) 其中:1)S是一组有限的状态,即状态集 (states)2)A是一组有限的行为(或者,As 是从状态可用的有限的一组行动s),即动作集 (Action)3)Pa(s,s')=Pr(st+1=s'mi...

2018-03-05 15:36:39

阅读数:605

评论数:0

人工智障学习笔记——强化学习(1)马尔科夫决策过程

概念马尔可夫决策过程(MDP)是基于马尔可夫过程理论的随机动态系统的最优决策过程。指决策者周期地或连续地观察具有马尔可夫性的随机动态系统,序贯地作出决策。即根据每个时刻观察到的状态,从可用的行动集合中选用一个行动作出决策,系统下一步(未来)的状态是随机的,并且其状态转移概率具有马尔可夫性。决策者根...

2018-02-27 15:04:36

阅读数:995

评论数:0

人工智障学习笔记——深度学习(4)生成对抗网络

概念 生成对抗网络(GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。判别模型比较好理解,就像分类一样,有一...

2018-01-18 14:38:54

阅读数:873

评论数:0

人工智障学习笔记——深度学习(3)递归神经网络

传统的神经网络模型中,输入层到隐含层再到输出层他们的层与层之间是全连接的,但是每层之间的节点是无连接的。这样就会造成一个问题,有些情况,每层之间的节点可能是存在某些影响因素的。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。而递归神经网络就能很好的...

2018-01-03 18:37:30

阅读数:1361

评论数:0

提示
确定要删除当前文章?
取消 删除