陶哲轩实分析 推论 7.3.2 (比较判别法) 证明

设$\sum_{n=m}^{\infty}a_n$和$\sum_{n=m}^{\infty}b_n$是两个实数的收敛级数.并设对于一切$n\geq m$,$|a_n|\leq b_n$.如果$\sum_{n=m}^{\infty}b_n$收敛,那么$\sum_{n=m}^{\infty}a_n$绝对收敛.


证明:$\sum_{n=m}^{\infty}b_n$收敛,说明对于任意给定的正实数$\varepsilon$,都存在相应的整数$N$,对于一切$p\geq q\geq N$,都有$\sum_{n=q}^p|b_n|\leq\varepsilon$.则$\sum_{n=q}^p|a_n|\leq \varepsilon$.说明$\sum_{n=m}^{\infty}a_n$绝对收敛.$\Box$


由于$\sum_{n=m}^{\infty}a_n$绝对收敛,所以它也是条件收敛.

 

并且$$|\sum_{n=m}^{\infty}a_n|\leq\sum_{n=m}^{\infty}|a_n|\leq\sum_{n=m}^{\infty}b_n$$


证明:对于任意整数$N$,都有
$$|\sum_{n=m}^{N}a_n|\leq\sum_{n=m}^{N}|a_n|$$
所以$$\lim_{N\to\infty}|\sum_{n=m}^{N}a_n|\leq\lim_{N\to\infty}\sum_{n=m}^{N}|a_n|$$
即$$|\sum_{n=m}^{\infty}a_n|\leq \sum_{n=m}^{\infty}|a_n|$$

同样易证
$$\sum_{n=m}^{\infty}|a_n|\leq\sum_{n=m}^{\infty}b_n$$

转载于:https://www.cnblogs.com/yeluqing/archive/2012/11/02/3827836.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值