数值积分与微分
实验目的:1)用matlab软件掌握梯形公式、辛普森公式和蒙特卡罗方法计算数值积分;
2)通过实例学习用数值积分和数值微分解决实际问题。
实验内容:
第一题:用梯形、辛普森和蒙特卡罗方法计算积分。改变步长(对梯形),改变精度要求(对辛普森),改变随机点数目(对蒙特卡罗),进行比较、分析。
1e22x-,-2≤x≤2
y=
π2
解:用三种方法计算积分的源程序如下:
10-,108-;对对梯形公式取h=4/50,4/100,4/10000;对辛普森分别取精度为103-,7
从得到的结果可以看到对梯形公式,步长越小,计算的积分结果越准确;对于辛普森公式,在一般的103-精度下结果已经很准确(小数点后前六位均为准确数字),提高精度后结果更加精确,可见辛普森具有很高的优越性,但它的局限性在于必须要有函数解析式;对于蒙特卡罗方法,虽然结果具有随机性,但随着n 增大,得到的结果越来越接近准确值。
解:用中点公式计算导数k.则?P=k?V。因为?V=1,所以?P数值上等于k。
取h=0.1,利用三次样条计算P在V-h,V+h处的数值,从而利用中点公