matlab中积分与微分,数值积分与微分MATLAB公式

该实验使用MATLAB探讨了梯形、辛普森和蒙特卡罗方法在数值积分中的应用。通过改变步长、精度要求和随机点数目,发现梯形公式结果随步长减小而更精确,辛普森公式在较低精度下已能提供高精度结果,而蒙特卡罗方法随着点数增加逼近准确值。实验展示了各种方法的优缺点和适用场景。
摘要由CSDN通过智能技术生成

数值积分与微分

实验目的:1)用matlab软件掌握梯形公式、辛普森公式和蒙特卡罗方法计算数值积分;

2)通过实例学习用数值积分和数值微分解决实际问题。

实验内容:

第一题:用梯形、辛普森和蒙特卡罗方法计算积分。改变步长(对梯形),改变精度要求(对辛普森),改变随机点数目(对蒙特卡罗),进行比较、分析。

1e22x-,-2≤x≤2

y=

π2

解:用三种方法计算积分的源程序如下:

40be888ee8d6148c4217845c91af244b.png

10-,108-;对对梯形公式取h=4/50,4/100,4/10000;对辛普森分别取精度为103-,7

c3b25f61f9a9080158ffdd17138aa93c.png

从得到的结果可以看到对梯形公式,步长越小,计算的积分结果越准确;对于辛普森公式,在一般的103-精度下结果已经很准确(小数点后前六位均为准确数字),提高精度后结果更加精确,可见辛普森具有很高的优越性,但它的局限性在于必须要有函数解析式;对于蒙特卡罗方法,虽然结果具有随机性,但随着n 增大,得到的结果越来越接近准确值。

62b44d48a246a70651df000617e4f9cb.png

解:用中点公式计算导数k.则?P=k?V。因为?V=1,所以?P数值上等于k。

取h=0.1,利用三次样条计算P在V-h,V+h处的数值,从而利用中点公

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值