Heavy Cargo
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 2412 | Accepted: 1321 |
Description
Big Johnsson Trucks Inc. is a company specialized in manufacturing big trucks. Their latest model, the Godzilla V12, is so big that the amount of cargo you can transport with it is never limited by the truck itself. It is only limited by the weight restrictions that apply for the roads along the path you want to drive.
Given start and destination city, your job is to determine the maximum load of the Godzilla V12 so that there still exists a path between the two specified cities.
Given start and destination city, your job is to determine the maximum load of the Godzilla V12 so that there still exists a path between the two specified cities.
Input
The input will contain one or more test cases. The first line of each test case will contain two integers: the number of cities n (2<=n<=200) and the number of road segments r (1<=r<=19900) making up the street network.
Then r lines will follow, each one describing one road segment by naming the two cities connected by the segment and giving the weight limit for trucks that use this segment. Names are not longer than 30 characters and do not contain white-space characters. Weight limits are integers in the range 0 - 10000. Roads can always be travelled in both directions.
The last line of the test case contains two city names: start and destination.
Input will be terminated by two values of 0 for n and r.
Then r lines will follow, each one describing one road segment by naming the two cities connected by the segment and giving the weight limit for trucks that use this segment. Names are not longer than 30 characters and do not contain white-space characters. Weight limits are integers in the range 0 - 10000. Roads can always be travelled in both directions.
The last line of the test case contains two city names: start and destination.
Input will be terminated by two values of 0 for n and r.
Output
For each test case, print three lines:
- a line saying "Scenario #x" where x is the number of the test case
- a line saying "y tons" where y is the maximum possible load
- a blank line
Sample Input
4 3 Karlsruhe Stuttgart 100 Stuttgart Ulm 80 Ulm Muenchen 120 Karlsruhe Muenchen 5 5 Karlsruhe Stuttgart 100 Stuttgart Ulm 80 Ulm Muenchen 120 Karlsruhe Hamburg 220 Hamburg Muenchen 170 Muenchen Karlsruhe 0 0
Sample Output
Scenario #1 80 tons Scenario #2 170 tons
Source
思路:给出N个地点,然后给出这些地点之间的路径可以承受的汽车最大的压力。首先将这N个地点映射为数字。然后建立矩阵。最后可以用求最短路径的方法进行变形,从而求出答案。
1 #include <cstdlib> 2 #include <iostream> 3 #include <cstdio> 4 #include <cstring> 5 #include <cmath> 6 #include <string> 7 #include <map> 8 9 #define MAXINT 99999999 10 11 using namespace std; 12 13 int data[204][204]; 14 int dis[204]; 15 int isVis[204]; 16 17 18 char maps[204][34]; 19 int length=0; 20 21 22 int findv(char str[34]) 23 { 24 int i; 25 for(i=1;i<length;i++) 26 { 27 if(strcmp(maps[i],str)==0) 28 return i; 29 } 30 31 32 33 34 35 strcpy(maps[length],str); 36 length++; 37 38 return length-1; 39 } 40 41 42 43 int minn(int x,int y) 44 {if(x>y) 45 return y; 46 return x; 47 } 48 49 50 51 52 53 54 55 int main(int argc, char *argv[]) 56 { 57 58 int i,j,k; 59 int n,m; 60 int ncount=0; 61 62 63 while(scanf("%d%d",&n,&m)!=EOF) 64 { 65 if((n==0)&&(m==0)) 66 break; 67 68 length=1; 69 70 getchar(); 71 72 73 74 75 76 77 ncount++; 78 79 for(i=1;i<=n;i++) 80 for(j=1;j<=n;j++) 81 data[i][j]=0; 82 83 84 85 for(i=1;i<=m;i++) 86 { 87 char s1[34],s2[34]; 88 int w; 89 90 scanf("%s%s%d",s1,s2,&w); 91 92 getchar(); 93 94 95 int v1=findv(s1); 96 int v2=findv(s2); 97 98 99 data[v1][v2]=data[v2][v1]=w; 100 } 101 102 103 char s1[34],s2[34]; 104 105 scanf("%s%s",s1,s2); 106 getchar(); 107 108 109 int startv=findv(s1); 110 int endv=findv(s2); 111 112 113 114 115 116 for(i=1;i<=n;i++) 117 isVis[i]=0; 118 119 for(i=1;i<=n;i++) 120 {dis[i]=data[startv][i];} 121 122 123 124 int maxdis=0; 125 isVis[startv]=1; 126 127 for(i=1;i<=n;i++) 128 { 129 k=-1; 130 maxdis=0; 131 132 for(j=1;j<=n;j++) 133 { 134 if((isVis[j]==0)&&(maxdis<dis[j])) 135 {k=j;maxdis=dis[j];} 136 } 137 138 139 isVis[k]=1; 140 141 142 for(j=1;j<=n;j++) 143 { 144 int tmp=minn(dis[k],data[k][j]); 145 if((isVis[j]==0)&&(dis[j]<tmp)) 146 {dis[j]=tmp;} 147 } 148 } 149 150 151 printf("Scenario #%d\n",ncount); 152 153 154 155 printf("%d tons\n\n",dis[endv]); 156 157 } 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 //system("PAUSE"); 182 return EXIT_SUCCESS; 183 }