北京大学2017年数学分析考研试题

2017年北京大学硕士研究生数学分析真题

1.(10分) 证明:$$\lim_{n \to +\infty }\int_{0}^{\frac{\pi }{2}}\frac{\sin ^nx}{\sqrt{\pi -2x}}dx=0.$$

2.(10分) 证明:$\sum_{n=1}^{\infty }\frac{1}{1+nx^2}\sin \frac{x}{n^\alpha }$在任何有限区间上一致收敛的充要条件是:$\alpha > \frac{1}{2}$.

3.(10分) 设$\sum_{n=1}^{\infty }a_n$收敛.证明$$\lim_{s\rightarrow 0+}\sum_{n=1}^{\infty }a_nn^{-s}=\sum_{n=1}^{\infty }a_n.$$

4.(10分) 称$\gamma (t)=(x(t),y(t))$,$(t\in $属于某个区间$I)$是$\mathbb{R}^1$上$C^1$向量场$(P(x,y),Q(x,y))$的积分曲线,若${x}'(t)=P(\gamma (t))$,${y}'(t)=Q(\gamma (t)),\forall t\in I$,设$P_x+Q_y$在$\mathbb{R}^1$上处处非零,证明向量场$(P,Q)$的积分曲线不可能封闭(单点情形除外).

5.(20分) 假设$x_0=1,x_n=x_{n-1}+\cos x_{n-1},(n=1,2,\cdots )$,证明:当$x\rightarrow \infty $时,$x_n-\frac{\pi }{2}=o(\frac{1}{n^n})$.

6.(20分) 假设$f\in [0,1],\lim\limits_{x\rightarrow 0+}\frac{f(x)-f(0)}{x}=\alpha < \beta =\lim\limits_{x\rightarrow 1-}\frac{f(x)-f(0)}{x-1}$,证明:$$\forall \lambda \in [\alpha ,\beta ],\exists x_1,x_2\in [0,1],s.t. \lambda =\frac{f(x_2)-f(x_1)}{x_2-x_1}.$$

 

7. (20分)设$f$是$(0,+\infty)$上的凹(或凸)函数且$\displaystyle \lim_{x\to+\infty}xf'(x)=0$ (仅在$f$可导的点考虑极限过程).

8. (20分)设$\phi\in C^3(\mathbb{R}^3)$, $\phi$及其各个偏导数$\partial_i\phi(i=1,2,3)$在点$X_0\in \mathbb{R}^3$处取值都是$0$. $X_0$点的$\delta$邻域记为$U_\delta(\delta>0)$.如果$\left(\partial_{ij}^2\phi(X_0)\right)_{3\times 3}$是严格正定的,则当$\delta$充分小时,证明如下极限存在并求之:\[\mathop {\lim }\limits_{t \to  + \infty } t^{\frac32}\iiint_{{U _\delta }} {{e^{ - t\phi\left( {x_1,x_2,x_3} \right)}}\,dx_1dx_2dx_3} .\]


9. (30分) 将$(0,\pi)$上常值函数$f(x)=1$进行周期$2\pi$奇延拓并展为正弦级数:\[f(x)\sim \frac4\pi\sum_{n=1}^\infty \frac1{2n-1}\sin (2n-1)x.\]
该Fourier级数的前$n$项和记为$S_n(x)$,则$\displaystyle \forall x\in (0,\pi),S_n(x)=\frac2\pi\int_0^x\frac{\sin 2nt}{\sin t}dt$,且$\displaystyle \lim_{n\to\infty}S_n(x)=1$.证明$S_n(x)$的最大值点是$\displaystyle \frac\pi{2n}$且$\displaystyle\lim_{n\to\infty}S_n\left(\frac\pi{2n}\right)=\frac 2\pi \int_0^\pi\frac{\sin t}t dt$.

 

转自: http://www.math.org.cn/forum.php?mod=viewthread&tid=37135

 

参考解答见: http://www.cnblogs.com/zhangzujin/p/3527416.html

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值