普林斯顿大学公开课 算法1-10:并检查集合-高速整合方法优化

本节介绍了高速综合优化算法。

重量的概念,每次操作的时候将重量小的部件挂在重量大的部件之下。

这样就避免了树形结构太高的问题。


下图展示了优化前后的树形结构深度的对照。



证明


能够证明每一个节点的深度最大为lgN。



  1. 由于每次合并的时候较小的部件要放在较大的部件之下,所以假设要添加树的高度。每次合并之后,树的大小至少要翻一番。

  2. 而N个节点最多仅仅能翻lgN番。


复杂度


这样的算法中合并操作最坏的复杂度为lgN,查询操作最坏情况的复杂度为lgN。


路径压缩


尽管眼下的算法已经可以保证复杂度在lgN下面。可是还有更好的方法。


基本想法就是在查找根节点时,将路径上的全部节点进行路径压缩。仅仅须要一行额外的代码。


使用路径压缩之后查询操作的复杂度是lg*N。lg*是第二种函数,表示的是lgN几次才干达到1。比方lg*16,须要三次lg,lg16=4,lg4=2,lg2=1,所以lg*16=3。


理论上来说查询操作的复杂度不是1,可是实际应用中,这样的算法的复杂度就是1。


结论


尽管现代的超级计算机速度非常快,可是好的算法能节省很多其它的时间。第一种高速查找算法解决一个问题须要30年时间,而如今有了更好的算法。解决相同的问题仅仅须要6秒。

所以,不要期望以后计算机速度快了算法就不须要了。算法是计算机的基础。它永远不会过时。


代码


public  class  UnionFind {
     private  int [] id;
     private  int [] size;
 
     public  UnionFind( int  n) {
         id =  new  int [n];
         size =  new  int [n];
         for ( int  i =  0 ; i < n; i++) {
             id[i] = i;
             size[i] =  1 ;
         }
     }
 
     public  void  union( int  a,  int  b) {
         int  root_a = root(a);
         int  root_b = root(b);
 
         if (root_a == root_b) {
             return ;
         }
 
         // 为了保持树的平衡
         if (size[root_a] < size[root_b]) {
             id[root_a] = id[root_b];
             size[root_b] += size[root_a];
         else  {
             id[root_b] = id[root_a];
             size[root_a] += size[root_b];
         }
     }
 
     public  boolean  connected( int  a,  int  b) {
         return  root(a) == root(b);
     }
 
     public  int  root( int  x) {
         while (x != id[x]) {
             id[x] = id[id[x]];  // 路径压缩
             x = id[x];
         }
         return  x;
     }
}


版权声明:本文博主原创文章,博客,未经同意不得转载。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值