数据治理是什么?
数据治理是一套原则和实践,以保证数据在完整生命周期中的质量。
数据治理研究所(DGI)认为,它是一套切实可行的框架,帮助任何组织的各种数据利益相关方识别并满足其信息需求。DGI认为,企业不仅需要管理数据的系统还需要一套完整的规则体系,并通过流程和程序来确保这些规则都得到遵守。对任何治理系统来说,这都是一项艰巨的任务。Profisee平台这样的工具则可以使这项工作更加容易。
数据正在成为决定企业成功的核心企业资产。数字化转型在世界各地都被提上了日程。如果能够管理你的数据,就可以利用数据资产并成功进行数字化转型。这意味着必须部署适合组织发展、未来业务目标及业务模型的数据治理框架。该框架必须控制此过程中所需的数据标准,并在组织内部以及公司运营所在的业务生态系统中委派所需的角色和职责。

数据治理最佳实践
一方面,你可以从其他从事数据治理过程中进行学习。但是,每个组织都是不同的,你需要从无意识的成熟阶段到有效的成熟阶段中,一路调整数据治理实践。
本文列举了15个通用的最佳做法:
1、从小处开始。在商业的方方面面,不要眼高手低。力争快速获胜,并随着时间的推移建立雄心。
2、设定清晰、可衡量且具体的目标。你无法控制无法测量的内容。达到目标时去庆祝,并以此来赢得下一个胜利。
3、定义所有权。没有企业所有权,数据治理框架就无法成功。
4、确定相关角色和职责。数据治理是一个团队合作,其中包含来自业务各个部门的交付成果。
5、教育利益相关者。尽可能使用业务术语,并将数据治理学科的学术部分转换为业务上下文中有意义的内容。
6、专注于运营模式。数据治理框架必须集成到企业中开展业务的方式中。
7、地图基础架构、体系结构和工具。你的数据治理框架必须是企业体系结构、IT环境和所需工具的合理组成部分。
8、制定标准化的数据定义。必须分清什么需要集中管理,哪些需要敏捷化及本地化管理,并在两者之间取得平衡。
9、识别数据域。从数据域开始,在产生的影响和付出的行动之间获得最佳比率,以提高数据治理的成熟度。
10、识别关键数据元素。聚焦最关键的数据元素。
11、定义控制度量。将这些部署在最有意义的业务流程、IT应用程序和/或报告中。
12、建立商业案例。确定与增长、节省成本、风险和合规性有关的数据治理成熟度不断提高的优势。
13、利用指标。聚焦于企业通用绩效相关的有限的数据质量KPI。
14、经常交流。数据治理实践者认为,交流是该学科最关键的部分。
15、这是一种实践,而不是项目。
数据治理如何实施
数据治理领域包括但不限于数据标准、数据质量、元数据、数据模型、数据分布、数据存储、数据交换、数据生命周期、数据安全等内容。数据治理领域是随着银行业务发展变化的,领域之间的关系也需要不断深入挖掘和分析,最终将形成一个互相协同与验证的领域网,全方位地提升数据治理成效。
1、数据架构管理—规划并管理数据从产生端到使用端的分布、传输与存储的逻辑框架;
2、数据模型管理—企业的信息模型是企业数据标准的图形化展现;
3、数据标准管理—规范化企业重要活动及对象的数据记录格式;
4、数据质量管理—对数据的规范性、准确性、一致性、完整性、时效性进行持续监控和评估;
5、元数据管理—对企业数据资产的登记造册,并记录其相关性;
6、数据安全管理—对数据设定安全等级,保证其被适当地使用;
7、主数据管理—对企业关键的,跨系统共享的业务数据进行统一定义、集中保存、发布、更新及删除的过程;
8、数据生命周期管理—是对数据产生、存储、传输、使用和销毁全过程进行管理。

亿信华辰数据治理产品架构图
亿信华辰作为国内领先的智能数据产品与服务提供商,在长期的数据应用建设过程中积累了海量的数据治理案例和经验,已推出一站式数据治理管理平台-睿治,由元数据、数据标准、数据质量、数据集成、主数据、数据资产、数据交换、生命周期、数据安全等多产品组成,形成了一套从数据质量分析、问题发现、数据补录、流程管理到最后的绩效分析的全流程管理系统,帮助客户快速搭建起数据治理的全套管理流程和分析架构。