特征选择常用算法综述

本文转载自 http://www.cnblogs.com/heaad/archive/2011/01/02/1924088.html

1 综述

(1) 什么是特征选择 特征选择 ( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ) ,或属性选择( Attribute Selection ) ,是指从全部特征中选取一个特征子集,使构造出来的模型更好。 (2) 为什么要做特征选择 在机器学习的实际应用中,特征数量往往较多,其中可能存在不相关的特征,特征之间也可能存在相互依赖,容易导致如下的后果: ---- 特征个数越多,分析特征、训练模型所需的时间就越长。 ---- 特征个数越多,容易引起“维度灾难”,模型也会越复杂,其推广能力会下降。 特征选择能剔除不相关(irrelevant)或亢余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少运行时间的目的。另一方面,选取出真正相关的特征简化了模型,使研究人员易于理解数据产生的过程。

2 特征选择过程

2.1 特征选择的一般过程

特征选择的一般过程可用图1表示。首先从特征全集中产生出一个特征子集,然后用评价函数对该特征子集进行评价,评价的结果与停止准则进行比较,若评价结果比停止准则好就停止,否则就继续产生下一组特征子集,继续进行特征选择。选出来的特征子集一般还要验证其有效性。 综上所述,特征选择过程一般包括产生过程,评价函数,停止准则,验证过程,这4个部分。 (1) 产生过程( Generation Procedure ) 产生过程是搜索特征子集的过程,负责为评价函数提供特征子集。搜索特征子集的过程有多种,将在2.2小节展开介绍。 (2) 评价函数( Evaluation Function ) 评价函数是评价一个特征子集好坏程度的一个准则。评价函数将在2.3小节展开介绍。 (3) 停止准则( Stopping Criterion ) 停止准则是与评价函数相关的,一般是一个阈值,当评价函数值达到这个阈值后就可停止搜索。 (4) 验证过程( Validation Procedure ) 在验证数据集上验证选出来的特征子集的有效性。 [caption id="" align="aligncenter" width="657"] 特征选择的过程 图1  特征选择的过程 ( M. Dash and H. Liu 1997 )[/caption]

2.2 产生过程

产生过程是搜索特征子空间的过程。搜索的算法分为完全搜索(Complete),启发式搜索(Heuristic),随机搜索(Random) 3大类,如图2所示。 [caption id="" align="aligncenter" width="658"] 产生过程算法分类 图2. 产生过程算法分类 ( M. Dash and H. Liu 1997 )[/caption] 下面对常见的搜索算法进行简单介绍。
2.2.1完全搜索
完全搜索分为穷举搜索(Exhaustive)与非穷举搜索(Non-Exhaustive)两类。 (1) 广度优先搜索( Breadth First Search ) 算法描述:广度优先遍历特征子空间。 算法评价:枚举了所有的特征组合,属于穷举搜索,时间复杂度是O(2n),实用性不高。 (2)分支限界搜索( Branch and Bound ) 算法描述:在穷举搜索的基础上加入分支限界。例如:若断定某些分支不可能搜索出比当前找到的最优解更优的解,则可以剪掉这些分支。 (3) 定向搜索 (Beam Search ) 算法描述:首先选择N个得分最高的特征作为特征子集,将其加入一个限制最大长度的优先队列,每次从队列中取出得分最高的子集,然后穷举向该子集加入1个特征后产生的所有特征集,将这些特征集加入队列。 (4) 最优优先搜索 ( Best First Search ) 算法描述:与定向搜索类似,唯一的不同点是不限制优先队列的长度。
2.2.2 启发式搜索
(1)序列前向选择( SFS , Sequential Forward Selection ) 算法描述:特征子集X从空集开始,每次选择一个特征x加入特征子集X,使得特征函数J( X)最优。简单说就是,每次都选择一个使得评价函数的取值达到最优的特征加入,其实就是一种简单的贪心算法。 算法评价:缺点是只能加入特征而不能去除特征。例如:特征A完全依赖于特征B与C,可以认为如果加入了特征B与C则A就是多余的。假设序列前向选择算法首先将A加入特征集,然后又将B与C加入,那么特征子集中就包含了多余的特征A。 (2)序列后向选择( SBS , Sequential Backward Selection ) 算法描述:从特征全集O开始,每次从特征集O中剔除一个特征x,使得剔除特征x后评价函数值达到最优。 算法评价:序列后向选择与序列前向选择正好相反,它的缺点是特征只能去除不能加入。 另外,SFS与SBS都属于贪心算法,容易陷入局部最优值。 (3) 双向搜索( BDS , Bidirectional Search ) 算法描述:使用序列前向选择(SFS)从空集开始,同时使用序列后向选择(SBS)从全集开始搜索,当两者搜索到一个相同的特征子集C时停止搜索。 双向搜索的出发点是 。如下图所示,O点代表搜索起点,A点代表搜索目标。灰色的圆代表单向搜索可能的搜索范围,绿色的2个圆表示某次双向搜索的搜索范围,容易证明绿色的面积必定要比灰色的要小。 [caption id="" align="aligncenter" width="400"] 图2. 双向搜索 图2. 双向搜索[/caption] (4) 增L去R选择算法 ( LRS , Plus-L Minus-R Selection ) 该算法有两种形式: 算法从空集开始,每轮先加入L个特征,然后从中去除R个特征,使得评价函数值最优。( L > R ) 算法从全集开始,每轮先去除R个特征,然后加入L个特征,使得评价函数值最优。( L < R ) 算法评价:增L去R选择算法结合了序列前向选择与序列后向选择思想, L与R的选择是算法的关键。 (5) 序列浮动选择( Sequential Floating Selection ) 算法描述:序列浮动选择由增L去R选择算法发展而来,该算法与增L去R选择算法的不同之处在于:序列浮动选择的L与R不是固定的,而是“浮动”的,也就是会变化的。 序列浮动选择根据搜索方向的不同,有以下两种变种。 序列浮动前向选择( SFFS , Sequential Floating Forward Selection ) 算法描述:从空集开始,每轮在未选择的特征中选择一个子集x,使加入子集x后评价函数达到最优,然后在已选择的特征中选择子集z,使剔除子集z后评价函数达到最优。 序列浮动后向选择( SFBS , Sequential Floating Backward Selection ) 算法描述:与SFFS类似,不同之处在于SFBS是从全集开始,每轮先剔除特征,然后加入特征。 算法评价:序列浮动选择结合了序列前向选择、序列后向选择、增L去R选择的特点,并弥补了它们的缺点。 (6) 决策树( Decision Tree Method , DTM) 算法描述:在训练样本集上运行C4.5或其他决策树生成算法,待决策树充分生长后,再在树上运行剪枝算法。则最终决策树各分支处的特征就是选出来的特征子集了。决策树方法一般使用信息增益作为评价函数。
2.2.3 随机算法
(1) 随机产生序列选择算法(RGSS, Random Generation plus Sequential Selection) 算法描述:随机产生一个特征子集,然后在该子集上执行SFS与SBS算法。 算法评价:可作为SFS与SBS的补充,用于跳出局部最优值。 (2) 模拟退火算法( SA, Simulated Annealing ) 模拟退火算法可参考 大白话解析模拟退火算法 。 算法评价:模拟退火一定程度克服了序列搜索算法容易陷入局部最优值的缺点,但是若最优解的区域太小(如所谓的“高尔夫球洞”地形),则模拟退火难以求解。 (3) 遗传算法( GA, Genetic Algorithms ) 遗传算法可参考 遗传算法入门 。 算法描述:首先随机产生一批特征子集,并用评价函数给这些特征子集评分,然后通过交叉、突变等操作繁殖出下一代的特征子集,并且评分越高的特征子集被选中参加繁殖的概率越高。这样经过N代的繁殖和优胜劣汰后,种群中就可能产生了评价函数值最高的特征子集。 随机算法的共同缺点:依赖于随机因素,有实验结果难以重现。

2.3 评价函数

评价函数的作用是评价产生过程所提供的特征子集的好坏。 评价函数根据其工作原理,主要分为筛选器(Filter)、封装器( Wrapper )两大类。 筛选器通过分析特征子集内部的特点来衡量其好坏。筛选器一般用作预处理,与分类器的选择无关。筛选器的原理如下图3: [caption id="" align="aligncenter" width="339"] 图3. Filter原理 图3. Filter原理(Ricardo Gutierrez-Osuna 2008 )[/caption] 封装器实质上是一个分类器,封装器用选取的特征子集对样本集进行分类,分类的精度作为衡量特征子集好坏的标准。封装器的原理如图4所示。 [caption id="" align="aligncenter" width="351"] 图4. Wrapper原理 (Ricardo Gutierrez-Osuna 2008 ) 图4. Wrapper原理 (Ricardo Gutierrez-Osuna 2008 )[/caption] 下面简单介绍常见的评价函数。 (1) 相关性( Correlation) 运用相关性来度量特征子集的好坏是基于这样一个假设:好的特征子集所包含的特征应该是与分类的相关度较高(相关度高),而特征之间相关度较低的(亢余度低)。 可以使用线性相关系数(correlation coefficient) 来衡量向量之间线性相关度。 ( 2) 距离 (Distance Metrics ) 运用距离度量进行特征选择是基于这样的假设:好的特征子集应该使得属于同一类的样本距离尽可能小,属于不同类的样本之间的距离尽可能远。 常用的距离度量(相似性度量)包括欧氏距离、标准化欧氏距离、马氏距离等。 (3) 信息增益( Information Gain ) 假设存在离散变量Y,Y中的取值包括{y1,y2,....,ym} ,yi出现的概率为Pi。则Y的信息熵定义为: 信息熵有如下特性:若集合Y的元素分布越“纯”,则其信息熵越小;若Y分布越“紊乱”,则其信息熵越大。在极端的情况下:若Y只能取一个值,即P1=1,则H(Y)取最小值0;反之若各种取值出现的概率都相等,即都是1/m,则H(Y)取最大值log2m。 在附加条件另一个变量X,而且知道X=xi后,Y的条件信息熵(Conditional Entropy)表示为:

在加入条件X前后的Y的信息增益定义为 类似的,分类标记C的信息熵H( C )可表示为: 将特征Fj用于分类后的分类C的条件信息熵H( C | Fj )表示为: 选用特征Fj前后的C的信息熵的变化成为C的信息增益(Information Gain),用表示IG(C|Fj),公式为: 假设存在特征子集A和特征子集B,分类变量为C,若IG( C|A ) > IG( C|B ) ,则认为选用特征子集A的分类结果比B好,因此倾向于选用特征子集A。 (4)一致性( Consistency ) 若样本1与样本2属于不同的分类,但在特征A、 B上的取值完全一样,那么特征子集{A,B}不应该选作最终的特征集。 (5)分类器错误率 (Classifier error rate ) 使用特定的分类器,用给定的特征子集对样本集进行分类,用分类的精度来衡量特征子集的好坏。 以上5种度量方法中,相关性、距离、信息增益、一致性属于筛选器,而分类器错误率属于封装器。 筛选器由于与具体的分类算法无关,因此其在不同的分类算法之间的推广能力较强,而且计算量也较小。而封装器由于在评价的过程中应用了具体的分类算法进行分类,因此其推广到其他分类算法的效果可能较差,而且计算量也较大。 参考资料 [1] M. Dash, H. Liu, Feature Selection for Classification. In:Intelligent Data Analysis 1 (1997) 131–156. [2]Lei Yu,Huan Liu, Feature Selection for High-Dimensional Data:A Fast Correlation-Based Filter Solution [3] Ricardo Gutierrez-Osuna, Introduction to Pattern Analysis ( LECTURE 11: Sequential Feature Selection ) http://courses.cs.tamu.edu/rgutier/cpsc689_f08/l11.pdf --EOF-- 再次申明,本文转自 http://www.cnblogs.com/heaad/archive/2011/01/02/1924088.html,感谢博主

转载于:https://my.oschina.net/gongshang/blog/269850

n many data analysis tasks, one is often confronted with very high dimensional data. Feature selection techniques are designed to find the relevant feature subset of the original features which can facilitate clustering, classification and retrieval. The feature selection problem is essentially a combinatorial optimization problem which is computationally expensive. Traditional feature selection methods address this issue by selecting the top ranked features based on certain scores computed independently for each feature. These approaches neglect the possible correlation between different features and thus can not produce an optimal feature subset. Inspired from the recent developments on manifold learning and L1-regularized models for subset selection, we propose here a new approach, called {\em Multi-Cluster/Class Feature Selection} (MCFS), for feature selection. Specifically, we select those features such that the multi-cluster/class structure of the data can be best preserved. The corresponding optimization problem can be efficiently solved since it only involves a sparse eigen-problem and a L1-regularized least squares problem. It is important to note that MCFS can be applied in superised, unsupervised and semi-supervised cases. If you find these algoirthms useful, we appreciate it very much if you can cite our following works: Papers Deng Cai, Chiyuan Zhang, Xiaofei He, "Unsupervised Feature Selection for Multi-cluster Data", 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'10), July 2010. Bibtex source Xiaofei He, Deng Cai, and Partha Niyogi, "Laplacian Score for Feature Selection", Advances in Neural Information Processing Systems 18 (NIPS'05), Vancouver, Canada, 2005 Bibtex source
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值