自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

swpucwf的博客

写自己的笔记,让别人卷去吧

  • 博客(286)
  • 资源 (3)
  • 收藏
  • 关注

原创 从0到1搭建多代理混合检索RAG系统:架构设计与核心组件解析

本文作为系列博客的开篇,带大家完成了多代理混合RAG系统的“从0到1”搭建:明确了系统架构设计、核心组件分工、工作流程,完成了Docker环境部署、种子数据插入和知识库初始化,并通过测试验证了系统的基本功能。这套系统的核心优势在于“分工明确、多源融合、智能调度”,既能处理结构化数据查询,又能挖掘关系型知识和检索文本细节,为复杂场景下的智能应用提供了可落地的架构方案。

2026-01-30 11:05:05 617

原创 基于多Agent协同的代码智能开发系统:架构设计与全流程实现解析

用户发起代码开发相关需求,由前台可见的build、plan、general、explore Agent承接,通过调用标准化工具完成核心业务处理。每个任务Step执行完毕后,自动触发summary Agent进行代码变更统计与摘要生成,同时联动title Agent生成会话标题。系统实时监控Token资源使用情况,当资源接近模型上限时,触发compaction Agent执行会话压缩,保障模型稳定运行。

2026-01-29 14:53:03 584

原创 大语言模型实战(十八)——基于langchain1.0 构建传统 RAG Agent:从文档到知识库的完整之旅

Step 7: 定义 AgentStatenext: str# Step 8: 创建 vec_kg Agent 节点Answer:""",知识截止日期固定(训练数据年份)无法访问私密数据容易产生幻觉(编造答案)文档处理:加载 → 分割 → 向量化知识存储:向量数据库集成检索增强:基于语义的精准匹配智能生成:RAG Chain 组合多代理集成:LangGraph 框架应用📚 企业知识库问答💼 产品信息快速查询📖 文档智能总结🔍 复杂问题推理。

2026-01-28 16:36:48 616

原创 大语言模型实战(十七)——GraphRAG(图谱检索增强生成)介绍

GraphRAG(Graph Retrieval-Augmented Generation)是传统 RAG 的进阶形态,核心是将非结构化文本转化为结构化知识图谱,基于图谱的实体、关系、拓扑结构实现「语义 + 结构化推理检索」,结合大模型生成精准、全面、有逻辑的答案。其将图谱构建、图谱检索推理、结构化上下文重构、大模型生成深度融合为端到端流程,实现从“片段式检索” 到 “结构化推理”的升级,核心解决传统 RAG 上下文丢失、复杂推理能力弱的问题,同时提升答案可解释性、降低幻觉,简化知识更新维护流程。

2026-01-27 16:20:29 596

原创 langGraph从入门到精通(十一)——基于langgraph构建复杂工具应用的ReAct自治代理

LangGraph中的主要图类型是StateGraph。每个节点通过State中的参数获取有效信息,执行完节点的内部逻辑后,更新该State状态中的值。不同的状态模式,可以通过注释设置状态的特定属性(例如覆盖现有值)或添加到现有属性。设置边缘条件,有条件的原因是,根据节点的输出,可以采用多个路径之一。在该节点运行之前,所采用的路径是未知的(由大模型决定)。条件边缘:调用代理后,如果代理说要采取行动,那么应该调用调用工具的函数。如果代理说已经完成,那么就应该完成。

2026-01-26 15:11:45 612 1

原创 langGraph从入门到精通(十)——手动构建 Tool Calling Agent:基于langGraph的智能体闭环控制系统开发(含 ReAct 循环实战)

使用 Annotated 和 operator.add 实现消息列表的追加合并核心作用:定义智能体在运行过程中的“记忆”载体。为何这样实现确保了每次节点输出的新消息会被追加到现有列表中,而不是替换它,从而维持对话上下文。手动构建 Tool Calling Agent 是掌握 LangGraph 的必经之路。通过StateGraph管理状态,利用实现决策闭环,我们能够构建出极具智能的系统。复现失败快速排查清单检查是否有效。检查tools.py中的函数是否带有@tool装饰器。确保安装了。

2026-01-22 17:51:43 612

原创 langGraph从入门到精通(九)——基于LangGraph构建具备多工具调用与自动化摘要能力的智能 Agent

使用 Pydantic 定义工具的参数约束,确保 LLM 输出的准确性。# 定义状态:使用 Annotated 和 operator.add 实现消息自动追加# 定义工具参数模型name: str = Field(description="用户姓名")age: Optional[int] = Field(description="用户年龄")email: str = Field(description="邮箱地址")

2026-01-21 14:48:42 643

原创 langGraph从入门到精通(八)——基于LangGraph 实战实现ToolNode 工具节点与多工具自动调用机制

执行器配置、手动指令模拟、模型闭环集成。复现失败快速排查清单检查是否正确继承。确保ToolNode接收的是包含tool_calls的AIMessage。验证thread_id在config中是否已定义。欢迎评论区留言讨论核心主题相关的问题,若复现失败可留言你的系统版本+报错日志,我会及时回复~

2026-01-20 10:55:26 595

原创 langGraph从入门到精通(七)——基于 LangGraph 的结构化数据AI 代理自动入库实战

本文通过实现了从语义理解到持久化存储的全自动化。核心收获在于理解了如何通过条件边来管理 Agent 的执行路径。未来我们可以进一步扩展,在insert_db节点之前加入人工确认节点(Human-in-the-loop),确保入库数据的 100% 准确。欢迎评论区留言讨论核心主题相关的问题~

2026-01-19 11:32:54 720

原创 langGraph从入门到精通(六)——基于 LangGraph 实现结构化输出与智能 Router 路由代理

本文展示了 LangGraph 如何通过结构化输出与智能 Router 路由代理欢迎评论区留言讨论核心主题相关的问题~

2026-01-18 15:29:01 642

原创 langGraph从入门到精通(五)——基于 LangGraph 实现 Qwen 模型多轮对话 memory 与 JSON 提取

Annotated是 Python 3.9+ 引入的类型注解特性,允许我们在声明类型时附加元数据。在 LangGraph 中,它被用来绑定Reducer 函数。# 定义状态模式# 使用 Annotated 配合 operator.add 实现消息自动追加 # 核心状态定义Type (List[str]:定义了状态字段的数据类型。Metadata (:定义了更新指令。如果没有这个指令,LangGraph 默认会用新值覆盖旧值;有了它,系统才知道要执行“追加”操作。

2026-01-15 09:23:55 702

原创 langGraph从入门到精通(四)——基于LangGraph的State状态模式设计

掌握State 的定义模式是开启 LangGraph 高阶开发的大门。通过TypedDict我们建立了一套可预测的数据契约。划重点:状态在任何给定时间只包含来自一个节点的更新信息,但 LangGraph 内部的合并机制让它看起来像一个全局共享池。下一步,我们将研究如何通过Annotated与实现对话历史的自动追溯。欢迎评论区留言讨论核心主题相关的问题~

2026-01-14 16:29:14 720

原创 langGraph从入门到精通(三)——基于LangGraph的智能问答系统开发:Python单代理架构实战

作为LangChain生态中的明星级框架,通过图论(Graph)的思想完美解决了状态持久化与循环逻辑控制的问题。本文将带你通过一个亲测有效的实战案例,掌握LangGraph的底层构建流程、State状态模式设计以及单代理架构的实现。学习本文后,你将能够独立搭建具备状态管理能力的智能对话系统。在构建复杂的LLM应用时,如何精细化控制AI的执行流程与状态流转一直是开发者的痛点。执行代码后,我们可以看到系统成功调用了通义千问模型,并返回了结构化的answer。标记控制流转生命周期,实现数据在节点间的精准传递。

2026-01-14 14:21:45 795

原创 langGraph从入门到精通(二)——LangGraph底层原理与入门实践

大模型是 Agent 的 “大脑”:一边靠推理能力做任务规划,一边靠工具调用能力联动外部资源,同时结合记忆模块延续上下文,最终通过行动模块完成自主循环。模型(LLM)在 Agent 中的核心原理是以 LLM 为中枢,联动四大模块实现自主任务处理。

2026-01-14 11:13:35 594

原创 Qwen3-VL在华为昇腾 NPU 910B4 vLLM-Ascend完整部署指南

创建HwHiAiUser(UID 981) 和hisi组 (GID 1000),与 NPU 设备文件权限匹配配置环境脚本优化容器启动配置cd /root/qwen3vl # 构建镜像,标记为 latest docker build -t qwen3-vl-custom:latest . # 验证构建结果 docker images | grep qwen3-vl-custom。

2026-01-07 14:42:09 1641 1

原创 大语言模型实战(十六)——MCP完整语法指南:从零掌握Model Context Protocol的所有语法和模式

功能Server方法Client方法返回类型ResourcesResourcesstrToolsList[Tool]ToolsPromptsPromptsSampling返回采样请求解析并执行采样LLM回复。

2026-01-06 22:18:36 829

原创 大语言模型实战(十五)——MCP Sampling采样请求完全解析:LLM参数微调与人工干预的完美融合

Sampling不是MCP的新概念,而是对现有模式的优雅延伸【传统方式】Server → 定义提示词 → Client获取 → Client调用LLM → 返回结果【Sampling方式】Server → 发起采样请求 → Client接收 →Client[可选:调整参数] →Client调用LLM →Client[可选:修改结果] →返回给Server关键洞察:Sampling本质上是Server将LLM调用的主动权委托给Client,但参数完全由Server控制。知识点掌握度。

2026-01-05 23:36:16 889

原创 大语言模型实战(十四)——MCP Prompts提示系统深度解析:构建智能提示模板库与LLM集成方案

这是本案例的核心。# 【关键】定义提示词模板字典description="分析代码并提供改进建议",description="需要审查的代码",),description="编程语言",),description="审查重点(可选:performance, security, readability)",),description="解释代码的工作原理",description="需要解释的代码",),description="编程语言",),

2026-01-05 23:28:25 1069

原创 大语言模型实战(十三)——MCP工具系统完全指南:从零构建AI可调用的工具生态(FastMCP+LLM工具调用循环)

《MCP工具系统完全指南:从零构建AI可调用的工具生态(FastMCP+LLM工具调用循环)》当前AI应用面临一个核心痛点:LLM虽然能理解用户需求,但无法直接执行复杂的业务逻辑。传统方案是硬编码工具调用逻辑,导致代码耦合度高、扩展性差。MCP(Model Context Protocol)通过标准化的工具暴露机制,让Server可以定义任意工具,Client(包括LLM)可以动态发现和调用这些工具。这次实战我们将深入理解这个架构的精妙之处。通过本文,你将学会:环境要求:MCP工具系统采用Server-Cl

2026-01-05 22:51:02 1045

原创 大语言模型实战(十二)——MCP资源发现完整指南:从服务器暴露数据到客户端语义检索(含医学RAG系统)

MCP资源系统 = 文件服务器 + 向量化索引 + LLM智能查询知识点应用场景难度1️⃣ 资源列表服务器暴露数据清单⭐ 简单2️⃣ 资源读取客户端访问数据内容⭐ 简单3️⃣ 向量化文本→数学表示⭐⭐ 中等4️⃣ 语义检索FAISS加速搜索⭐⭐ 中等5️⃣ RAG系统LLM+文档回答⭐⭐⭐ 复杂代码优化简化⭐ 简单最实用的模式:示例2(资源读取) + 示例4(FastMCP)=最短路径生成RAG系统✨MCP Resources = 为LLM定制的文件服务系统,让AI应用以标准化、高效、安全。

2026-01-05 21:48:21 1152

原创 大语言模型实战(十一)——基于MAI-UI-8B 实现 Android UI 自动化:从元素定位到多步导航

本地部署MAI-UI-8B 推理服务(Docker + vLLM)封装工具和,开箱即用实测案例验证了元素定位和多步导航的准确性踩坑记录解决了 6 个常见问题,节省你 2 天调试时间Android 自动化测试(替代 UIAutomator)RPA 流程录制(可视化操作步骤)无障碍辅助工具(语音指令控制手机)

2026-01-05 09:02:26 1597

原创 大语言模型实战(十)——基于通义千问 + FastMCP 打造天气查询机器人

MCP(Model Context Protocol)是标准化的 LLM 工具调用协议。场景:用户问 AI “纽约天气怎样?方案实现方式问题方案 1:拒绝“我不知道”LLM 知识库有限,无法处理实时数据方案 2:散乱集成写 if/else 判断调用哪个 API每个 LLM 都要重新适配,维护困难方案 3:标准协议遵循 MCP 规范,让 LLM 自动发现并调用工具✅ 优雅、可扩展、LLM 无关MCP 就是方案 3 的标准协议。Server 端如何声明工具→装饰器Client 端如何发现工具→。

2026-01-03 23:53:16 841 1

原创 大语言模型实战(九)——从零到一:搭建基于 MCP 的 RAG 系统完整教程

RAG 是检索(Retrieval):从知识库中查找相关的信息生成(Generation):使用 LLM 根据检索的信息生成回答✅ 可以处理模型未见过的最新信息✅ 回答基于真实数据,降低幻觉风险✅ 支持添加自定义知识库✅ 更精准和可信的回答MCP 是一个标准化协议,允许应用与 LLM 模型进行安全的交互。定义自定义工具供 LLM 调用实现客户端-服务器架构标准化人类与 AI 的交互流程# 原理:使用向量距离度量相似度距离越小 → 相似度越高。

2025-12-31 00:34:56 932

原创 大语言模型实战(八)——MCP(Model Context Protocol):AI 与外部世界交互的标准化协议

MCP(Model Context Protocol,模型上下文协议)是 Anthropic 推出的开放标准协议,核心作用是为大语言模型(LLM)提供标准化的上下文交互方式,让 LLM 能够规范地对接各类外部数据源和工具,实现“模型-外部资源”的高效、统一通信。MCP是一种用于大模型工具调用的开源协议,提供标准化交互方式允许AI模型实时调用外部服务获取信息或执行操作采用分离式架构,模型与工具解耦,系统更灵活可扩展。

2025-12-29 23:15:21 869

原创 Python MCP 工具开发入门:Server、Client 和 LLM 集成

param1 } {param2 } "param1 } {param2 } "param1 } {param2 } "param1 } {param2 } "装饰器用于定义一个可以根据参数返回不同数据的接口。资源是不同于工具的数据取…特性Resource(资源)Tool(工具)用途提供只读或结构化的数据执行操作或计算调用方式参数传递URI 路径参数函数参数使用场景获取文件、查询数据库计算、修改数据你是一个数学助手。当用户问到加法、减法、乘法、除法时,请调用相应的工具。

2025-12-29 22:52:34 1295

原创 Dify从入门到精通(一)——Dify环境搭建

Dify是由国内团队开发的开源大语言模型应用开发平台,定位为“LLM App Development Platform”。它将大模型应用开发的全流程(Prompt工程、数据集管理、应用发布、运营分析)整合到统一界面,支持私有化部署,既能满足企业级的安全需求,也能降低个人开发者的AI应用开发门槛。

2025-12-27 10:08:31 2223

原创 大语言模型实战(七)——面向目标架构案例之FunctionCall代码实战

它接收一个或多个 Python 函数对象组成的列表,先读取每个函数的名称和文档注释,再调用 glm-4 大模型,让模型根据函数注释生成符合 JSON Schema 规范的参数描述字典,最后将这些字典包装成 Chat 模型要求的functions参数格式;同时为了保证稳定性,代码还设置了最多 4 次的重试机制,若生成过程中报错会自动重试,直到成功或达到重试上限。安装PostgreSQL数据库镜像。自动识别调用工具并且实现调用。

2025-12-25 21:22:07 265

原创 大语言模型实战(六)——面向目标架构案例之FunctionCall技巧介绍

初始化大模型# 定义3个独立任务的消息列表SystemMessage(content="你是一位乐于助人的智能小助手"),HumanMessage(content="请帮我介绍一下什么是机器学习")SystemMessage(content="你是一位乐于助人的智能小助手"),HumanMessage(content="请帮我介绍一下什么是AIGC")SystemMessage(content="你是一位乐于助人的智能小助手"),

2025-12-23 11:55:19 701

原创 大语言模型实战(五)——大模型开发范式演进:从“调用API”到“多Agent复杂目标”

大模型的普及不仅带来了能力的升级,也重构了开发思路——从“写代码实现功能”到“用模型能力落地业务目标”。本文结合实际案例,拆解大模型开发范式的四层演进逻辑,帮你理清不同场景下的技术选择。

2025-12-22 17:43:56 1085

原创 大语言模型实战(四)——Transformer 网络架构源码剖析

实际使用中,Input Embedding的输出会与“位置编码(Positional Encoding)”的输出相加,得到最终的输入向量(既包含单词语义,又包含位置信息),再送入编码器。Encoder(编码器)是Transformer的“语义提取模块”,负责将输入文本(如待翻译的句子)编码为包含全局语义信息的特征向量,为后续的解码器提供输入。,核心作用是将离散的单词索引(如“苹果”对应索引100)转换为连续的、固定维度的稠密向量(词向量),为后续的注意力计算、特征提取提供可数值化的输入。

2025-12-22 16:33:15 890

原创 大语言模型实战(三)——词编码技术演进:从 “机器识字符” 到 “AI 懂语义”

大家好,今天我们聊聊自然语言处理(NLP)的“地基”——词编码技术。从让机器“区分单词”到“理解语义”,这背后是四代技术的迭代,正好对应四张经典示意图。

2025-12-22 15:29:34 497

原创 大语言模型实战(二)——Transformer网络架构解读

(源自经典论文《Attention Is All You Need》),同时补充了自注意力机制的计算逻辑,完整展示了Transformer的结构组成与核心模块的工作原理,是大语言模型(如GPT、BERT)的基础架构。,防止 softmax 输出过于极端,保证模型训练的稳定性和注意力机制的有效性。Transformer由**左侧的Encoder(编码器)Decoder同样由。

2025-12-22 14:48:09 825

原创 大语言模型实战(一)——基本介绍及环境配置

【代码】大语言模型实战(一)——基本介绍及环境配置。

2025-12-18 15:58:22 855

原创 基于通义千问 + Weaviate 向量库的 ResumeMind - 智能简历筛选诊断平台

在当今竞争激烈的就业市场中,无论是企业招聘还是个人求职,简历都扮演着至关重要的角色。然而,传统的简历处理方式往往效率低下,主观性强,往往难以满足快速变化的人才需求。应运而生,它是一款集于一体的全栈应用。该平台巧妙利用大语言模型(通义千问)和向量搜索技术,为HR和候选人打造了一个高效处理简历的解决方案,重新定义了简历处理的方式。

2025-12-07 11:10:53 888

原创 企业级OLAP业务落地:Agent架构范式与技术选型全解析

Agent架构是一种“具备自主决策与多步执行能力的智能体框架”,其核心目标是让大模型从“被动生成”升级为“主动解决问题”。与传统“面向Chain/过程开发”的模式不同(依赖固定数学模型、判别模型等预设逻辑),Agent架构以“任务为中心”,通过动态拆解步骤、调用工具、记忆历史信息,适配复杂多变的企业OLAP场景(如实时数据分析、多维度报表生成、跨部门数据协作)。适用场景:企业OLAP业务需求极为特殊(如自研OLAP引擎、特殊数据安全要求),需要完全脱离现有工具框架,构建专属Agent系统。目标人群。

2025-12-05 17:39:51 769

原创 langGraph从入门到精通(一)——langgraph概念解析

LangGraph是一种基于图计算的有状态Agent框架,旨在提供强大的编程模型,用于构建智能、自适应和可扩展的计算系统,以应对复杂计算挑战(如多轮对话、长期任务执行、多智能体协作)。功能:智能体对复杂信息(如长文档、多轮对话历史)进行汇总,提取关键要点,形成简明摘要;价值:帮助智能体快速理解复杂情境,减少后续节点的信息处理量(如将“1000字的会议记录”总结为“100字核心要点”)。子图是LangGraph中用于表示局部计算逻辑的基本单元,通过定义子图,可将复杂的图结构拆分为多个简单、可管理的模块。

2025-12-05 16:45:45 1117

原创 大模型从入门到精通(一)——大语言模型微调的前沿技术与应用

AdaLoRA(Adaptive LoRA)是对经典 LoRA 的自适应改进版,由清华大学 & 字节跳动团队 2023 年提出,核心解决了传统 LoRA“固定低秩维度(r)对所有层 / 任务均一化” 的问题 —— 通过动态调整不同层、不同 token 的 LoRA 秩分配,在保持极低参数量的同时,进一步提升微调效果,尤其适配复杂任务(如长文本生成、多模态、复杂对话)。Prompt Tuning 是 “低成本、高性能” 的大模型适配方案,用极小的提示参数就能达到接近全量微调的效果,同时避免参数冗余。

2025-12-05 14:53:15 715

原创 RAG从入门到精通(十五)——高级RAG范式

GraphRAG(Graph Retrieval-Augmented Generation)是融合 “知识图谱构建”“社区层次分析” 与 “检索增强生成” 的复合型技术框架,核心目标是通过图结构对非结构化语料进行结构化建模,利用社区划分实现知识的多粒度组织,最终在查询阶段整合宏观社区摘要与微观图谱关联信息,生成精准、全面且上下文连贯的回答。其完整流程分为离线索引构建阶段与在线查询推理阶段,两阶段通过多层级索引形成闭环,兼顾检索效率与回答质量。

2025-12-03 16:52:25 1313

原创 RAG从入门到精通(十四)——评估技术

对于 ROUGE-1(即 1-gram),匹配项包括“the”“cat”“on”和“mat”4 个。RAG(检索增强生成)系统专用的 “评估数据集” 结构—— 它是用来测试 RAG 系统性能的标准化数据模板,通过明确的 “问题、答案、来源” 对应关系,验证 RAG 的检索准确性和回答可靠性。只要有一个维度不达标,RAG的输出就是“无效”或“低质量”的——比如检索到了相关Context,但回答偏离了问题,依然是失败的RAG结果。这种计算方式,文本块排名越靠前,rankq 的倒数越大,MRR 也会越大。

2025-12-02 23:49:54 1290

原创 RAG从入门到精通(十三)——响应生成技术

GLM 系列(智谱 AI):以 GLM - 4.5V 为代表,不仅具备不错的通用对话能力,还强化了 3D 几何推理和物理公式推导能力,凭借 3D - RoPE 技术,在兼顾通用场景的同时,也能适配 STEM 学科相关的复杂需求。Grok(xAI):风格偏活泼,且具备一定的实时信息处理能力,其衍生的编程专项版本表现亮眼,基础通用版本在逻辑对话、观点输出等场景中,能呈现出差异化的表达风格,适合追求个性化交互的场景。它采用了多模态统一架构,支持超长上下文,并且在推理与代码能力方面有所强化。

2025-12-02 15:24:39 314

git常用的操作手册和指南

1. **配置 Git**:设置用户名和邮箱,确保提交记录中包含正确的用户信息。 2. **初始化仓库**:在本地目录中创建一个新的 Git 仓库。 3. **克隆仓库**:从远程仓库复制一份到本地,获取已有项目的副本。 4. **查看状态**:检查当前文件的状态,了解哪些文件被修改、删除或新增。 5. **添加文件**:将修改添加到暂存区,为提交做好准备。 6. **提交更改**:将暂存区的内容保存到本地仓库的历史记录中。 7. **查看历史**:查看项目的提交历史,了解更改的时间线。 8. **推送更改**:将本地提交的更改发送到远程仓库,与他人共享更新。 9. **拉取更改**:从远程仓库获取最新的更新,并将其合并到本地仓库。 10. **分支管理**:创建、切换和删除分支,便于独立开发不同的功能或版本。 11. **合并分支**:将不同分支的更改合并到一个分支中,整合开发成果。

2024-08-27

基于智谱AI和LangChain实现RAG应用代码

基于智谱AI和LangChain实现的RAG(Retrieval-Augmented Generation)应用是一种前沿的自然语言处理技术,结合了强大的语言生成模型和高效的检索系统。通过智谱AI的语言模型,RAG应用能够理解和生成高质量的自然语言文本,而LangChain提供的检索功能则确保了回答的准确性和相关性。 在这个系统中,用户提出的问题首先通过向量数据库进行检索,从中提取出最相关的文档或片段。随后,智谱AI模型利用这些检索到的上下文生成一个简明、准确的回答。通过集成会话记忆功能,RAG应用还支持多轮对话,能够保持上下文连贯性,适应复杂的交互需求。 这种技术的应用场景广泛,从智能问答系统、在线教育,到客户支持,RAG应用都能显著提升用户体验,提供更有针对性和深度的回答。总的来说,基于智谱AI和LangChain的RAG应用为下一代智能对话系统奠定了坚实的技术基础。

2024-08-27

基于LangChain和智谱API搭建知识库

基于LangChain和智谱API的知识库是一个强大的资源,它结合了自然语言处理和知识图谱技术,为用户提供全面且准确的知识检索和查询功能。LangChain是一个先进的语言处理引擎,能够实现文本的语义理解和分析,从而从大量的文本数据中提取有用的信息。智谱API则是一个基于知识图谱的搜索引擎,它能够将不同领域的知识进行关联和组织,形成一个完整的知识网络。 通过LangChain和智谱API的结合,用户可以方便地利用自然语言进行查询,无需专业的检索技巧或复杂的搜索语法。只需要输入相关领域的问题或关键词,系统就能自动理解用户的意图,并从知识库中找到最相关的资源。无论是科学、技术、医学还是人文社科领域的问题,都可以得到及时和正确的答案。 此外,LangChain和智谱API还支持多语言搜索和跨语言信息的处理。不论用户使用的是中文、英文还是其他语言,系统都能够进行准确的语义分析和知识检索。 总之,基于LangChain和智谱API的知识库提供了强大的语义理解和知识检索功能,帮助用户快速获取所需的信息,提升了信息检索的效率和准确性。

2024-08-26

百度的关键字爬取相关图片

百度关键字爬虫是一种用于从百度搜索引擎中抓取相关搜索结果的工具。它可以根据用户指定的关键字进行搜索,并将搜索结果保存为结构化的数据,如网页链接、标题、描述等信息。 Python编程语言:百度关键字爬虫常使用Python编写。如果您还不熟悉Python,可以学习一些基础知识,如语法、数据类型、循环和函数等。 爬虫框架:有很多Python爬虫框架可供选择,如Scrapy、BeautifulSoup和Selenium等。这些框架可以帮助您更方便地实现爬虫功能,处理网页和提取数据。您可以根据自己的需求选择合适的框架。 百度搜索API:如果您想更高效地获取百度搜索结果,可以考虑使用百度搜索API。该API提供了一系列接口,可以帮助您进行搜索,并获取相关的信息。您需要注册百度开发者账号,并获取API密钥。 数据存储:爬取的数据可以保存在本地文件中,也可以存储在数据库中,如MySQL或MongoDB等。您可以根据自己的需求选择适合的存储方式。 反爬虫策略:为了防止被百度的反爬虫机制封禁,您需要了解相关的反爬虫策略,并使用一些技巧来规避检测,如设置合适的爬取频率、使用代理IP和User-Age

2024-08-26

用于图像分割的代码源码

unet++实现代码参考源码

2024-04-21

图像分割的学习参考代码

图像分割的学习参考代码

2024-04-21

yolo v7的训练代码,包括导入导出

yolov7 的训练代码,包括数据集的制作,训练代码;

2024-04-20

实现一个简单的视频对象追踪应用,该应用支持多种追踪算法,并允许用户实时选择和追踪视频中的对象 这种技术在许多领域都有广泛的应用

实现一个简单的视频对象追踪应用,该应用支持多种追踪算法,并允许用户实时选择和追踪视频中的对象。这种技术在许多领域都有广泛的应用,包括安全监控、人机交互和自动驾驶车辆等。

2024-04-18

从指定路径读取图像文件、利用OpenCV进行图像处理,以及使用Caffe框架进行深度学习预测的过程

从指定路径读取图像文件、利用OpenCV进行图像处理,以及使用Caffe框架进行深度学习预测的过程。程序能够有效地对图像进行分类预测,并将结果直观地显示出来,适用于教学或研究目的。

2024-04-18

Python库d和OpenCV来实现眼部闭合检测,主要用于评估用户是否眨眼

这段代码使用了Python库d和OpenCV来实现眼部闭合检测,主要用于评估用户是否眨眼。下面是代码的主要步骤和相关的代码片段: ### 步骤一:导入必要的库和设置参数 首先,代码导入了必要的Python库,如dlib、OpenCV和scipy。通过`argparse`设置了输入视频和面部标记预测器的参数。 ```python from scipy.spatial import distance as dist from collections import OrderedDict import numpy as np import argparse import time import dlib import cv2 ``` ### 步骤二:定义面部关键点索引 使用`OrderedDict`定义了包含68个点的面部关键点,用于眼部分析。 ```python FACIAL_LANDMARKS_68_IDXS = OrderedDict([ ("mouth", (48, 68)), ("right_eyebrow", (17, 22)), ("left_e

2024-04-18

使用Python库dlib和OpenCV来实现面部特征点的检测和标注

使用Python库dlib和OpenCV来实现面部特征点的检测和标注。

2024-04-18

基于Opencv实现答题卡识别系统中的各个功能

实现答题卡识别系统中的各个功能。每个步骤都是自动化处理的关键部分,确保系统能够准确地读取和评分答题卡。自动化地完成了从读取图像到输出成绩的整个流程通过填涂密度判断学生选择,通过计算填涂区域的像素密度来判断学生的的选项。然后将这个选择与答案键中的正确选项进行比较,统计出正确的答案数量。

2024-04-18

停车位识别基于深度学习的停车位识别系统利用计算机视觉技术来自动检测和监控停车位的占用情况 地平线

基于深度学习的停车位识别系统利用计算机视觉技术来自动检测和监控停车位的占用情况。这种系统通常通过安装在停车场的摄像头来实现,摄像头捕捉的图像数据被送入深度学习模型进行分析。这些模型能够识别出图像中的停车位,并确定每个停车位是否被占用。此技术不仅提高了停车效率,减少了寻找停车位的时间,还可以被应用于智能交通系统中,实时更新停车信息,为驾驶者提供便利。深度学习模型的训练过程包括大量的图像数据,这些数据需要标注停车位的位置和状态,以训练模型准确识别。

2024-04-17

全景图像拼接;实现特征点检测与描述子

特征点检测与描述子计算: 使用 SIFT 算法检测图像的关键点,并计算每个点的描述子。这一步是识别图像中的特征并提取有用信息的关键步骤。 特征点匹配: 使用 KNN 和比值测试来筛选良好的匹配点。这一步是确保两图中对应的特征点确实相似,为后续的图像对齐打下基础。 计算单应性矩阵并进行图像变换: 使用 RANSAC 算法基于匹配点对计算单应性矩阵,这一矩阵能够描述一张图像到另一张图像的透视变换。 使用该矩阵通过透视变换将一张图像变形,使其与另一张图像对齐。 图像拼接: 将变换后的图像与另一张图像合并,形成一个单一的更大的图像。 结果展示: 可选地显示特征点的匹配情况,帮助理解两图是如何通过匹配点关联起来的。 ———————————————— 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 原文链接:https://blog.csdn.net/weixin_42917352/article/details/13789

2024-04-17

基于Opencv与tesseract 实现的文本识别

应用场景: 文档数字化:将纸质文档扫描后识别为数字文本。 自动化表单处理:从填写的表单中提取信息。 车牌识别:用于交通监控或自动收费系统。 辅助技术:帮助视觉障碍人士阅读印刷材料。 多语言支持:Tesseract 支持100多种语言的识别。 高度可定制:用户可以训练Tesseract来识别新的字体或优化特定语言的识别。 多种输出格式:Tesseract 可以输出普通文本、hOCR(带有布局信息的HTML)、PDF等格式。 集成易用:可以通过命令行使用,也可通过其API集成到其他应用程序中,比如通过pytesseract在Python中使用。

2024-04-17

基于OpenCV与模版匹配 实现信用卡、银行卡号识别

基于OpenCV与模版匹配 实现信用卡、银行卡号识别

2024-04-17

FasterRcnn.zip

FasterRcnn的代码复现

2021-11-17

MTCNN相关代码完美实现

深度学习 ,目标检测 、卷积神经网络

2021-11-05

Opencv从入门到跑路images.zip

用来实现博客上的资料

2021-07-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除