自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

swpucwf的博客

写自己的笔记,让别人卷去吧

  • 博客(347)
  • 资源 (3)
  • 收藏
  • 关注

原创 深度学习传统CV算法——边缘检测算子总结以及新兴边缘算法

边缘检测算子总结边缘检测算子总结SUSAN边缘及角点检测方法SUSAN检测方法概述SUSAN边缘检测边缘响应的计算边缘方向的计算非极大值抑制子像素精度检测位置并不依赖于窗口大小SUSAN角点检测排除误检的角点非极大值抑制SUSAN噪声滤波方法新兴的边缘检测算法边缘检测算子总结算子优缺点比较Roberts对具有陡峭的低噪声的图像处理效果较好, 但利用Roberts算子提取边缘的结果是边缘比较粗, 因此边缘定位不是很准确。Sobel对灰度渐变和噪声较多的图像处理效果比较好, S

2021-12-21 16:15:24 2996

原创 深度学习传统CV算法——二阶微分边缘算子

二阶微分边缘算子二阶微分边缘算子二阶微分边缘算子基本思想Laplace 算子拉普拉斯表达式图像中的Laplace 算子二阶微分边缘算子二阶微分边缘算子基本思想边缘即是图像的一阶导数局部最大值的地方,那么也意味着该点的二阶导数为零。二阶微分边缘检测算子就是利用图像在边缘处的阶跃性导致图像二阶微分在边缘处出现零值这一特性进行边缘检测的。对于图像的二阶微分可以用拉普拉斯算子来表示:∇2I=∂2I∂x2+∂2I∂y2\nabla^{2} I=\frac{\partial^{2} I}{\pa

2021-12-21 14:27:18 1159

原创 深度学习传统CV算法——一阶微分边缘算子

一阶微分边缘算子详解一阶微分边缘算子一阶微分边缘算子基本思想Roberts 算子Roberts 算法思想Roberts 算法步骤Roberts 算子的推导Roberts 算法优缺点Prewitt 算子Prewitt 算法思想Prewitt 算法步骤Prewitt 算法优缺点Sobel 算子Sobel 算法思想Sobel 算法步骤Sobel 算法优缺点Sobel 的变种——Istropic SobelKirsch 算子Kirsch 算法思想Kirsch 算法步骤Kirsch 算法计算优化Kirsch 算法优缺

2021-12-20 16:45:48 2567

原创 深度学习传统CV算法——边缘检测算法综述

边缘检测边缘概述认识边缘定义轮廓和边缘的关系边缘的类型边缘检测的概念概念边缘检测方法基本方法图像滤波图像增强图像检测图像定位边缘检测算子的概念常见的边缘检测算子用梯度算子实现边缘检测的原理梯度算子边缘点梯度梯度算子梯度如何衡量使用梯度算子实现边缘检测原理实现参考边缘概述认识边缘定义边缘是不同区域的分界线,是周围(局部)灰度值有显著变化的像素点的集合,有幅值与方向两个属性。这个不是绝对的定义,主要记住边缘是局部特征,以及周围灰度值显著变化产生边缘。轮廓和边缘的关系一般认为轮廓是对物体的完整边界的描

2021-12-16 17:22:16 6502

原创 windows cmake编译报错 “No CUDA toolset found.“

2. 将文件夹拷贝到对应VS文件夹目录。

2024-05-21 17:20:56 154

原创 YOLOv8 ONNX推理代码讲解——基于numpy实现

本文将详细讲解YOLOv8 ONNX推理的Python代码,包含如何进行本地摄像头、图像和视频推理的实现。通过以上代码,我们可以实现YOLOv8模型在本地进行图像、视频和摄像头的推理。将输入图像按比例缩放到目标尺寸,同时填充背景使得图像保持原比例不变。对图像进行预处理,包括调整大小、归一化以及格式转换。将检测框从中心坐标形式转换为边框坐标形式。将检测框坐标从缩放后图像转换回原始图像。执行非极大值抑制,去除重叠的检测框。将检测框限制在图像范围内。在图像上绘制检测框及标签。将检测结果绘制到图像上。

2024-05-17 10:54:24 257

原创 基于OpenCV年龄与性别识别系统

它首先创建一个图像的blob(一个经过预处理的图像数组),然后通过预训练的神经网络进行前向传播,检测出图像中的人脸。对于每个检测到的人脸,如果其置信度高于阈值,它计算出人脸的边界框,并在图像上绘制矩形。对于每个检测到的人脸,脚本提取人脸图像并生成一个blob,然后将其输入到性别和年龄识别模型中。通过模型的输出,它确定每个人脸的性别和年龄,并在原始图像上标记出这些信息。在脚本的主部分,它首先定义了命令行参数解析器,允许用户指定输入源(图像或视频文件,或者摄像头流)和推理设备(CPU或GPU)。

2024-05-13 22:52:40 550 1

原创 人体姿态估计学习

单人姿态估计: 输入是一个crop出来的行人,然后在行人区域位置内找出需要的关键点,比如头部,左手,右膝等。其中MPII是2014年引进的,目前可以认为是单人姿态估计中最常用的benchmark, 使用的是PCKh的指标(可以认为预测的关键点与GT标注的关键点经过head size normalize后的距离),最高93.9%。

2024-05-07 19:41:36 720

原创 寒武纪及瑞芯微平台调用加速调研

系列推理训练应用类型备注MLU220☑️❌边缘端INT8 8T算力+8.25W功耗;INT8 16T算力+16.5W;CPU计算能力较弱需要其他主控例如瑞芯微3588MLU270☑️❌服务器端部署服务端的智能分析算法;模型移植硬件平台;MLU290☑️☑️训练卡应用在各云厂商、机房和服务中心等,主要用于训练寒武纪平台的部署流程有一条主线是将一个原始模型转为一个离线模型。得到算法的原始模型,如caffe/pytorch/tensorflow等框架的模型。

2024-05-06 16:26:47 716

原创 NLP从入门到实战——命名实体识别

在实际应用中,BIO和BIOES是最常用的标注方案,因为它们能够提供足够的信息来帮助模型识别实体的边界和类别。同一个词在不同的上下文中可能表示不同的实体,或者不表示实体。在某些情况下,尤其是处理中文文本时,可能会采用基于词汇的标注,直接将整个词汇标注为一个实体,而不是使用BIO或BIOES等模式。Markup方法通常指的是使用XML或类似的标记语言来注释文本中的实体这种方法可以直接在文本中标记实体的边界和类型。不同的数据集可能采用不同的实体标注方法,最常见的标注方法有BIO,BIOES,Markup。

2024-05-05 23:16:55 899 1

原创 NLP从入门到精通——信息抽取概述

随着互联网和社交媒体的飞速发展,我们每天都会接触到大量的非结构化数据,如文本、图片和音频等。这些数据包含了丰富的信息,但也提出了一个重要问题:如何从这些海量数据中提取有用的信息和知识?这就是信息抽取(Information Extraction, IE) 的任务。信息抽取不仅是自然语言处理(NLP)的一个核心组成部分,也是许多实际应用的关键技术。例如:在医疗领域,信息抽取技术可以用于从临床文档中提取病人的重要信息,以便医生作出更准确的诊断。

2024-05-05 20:50:36 845

原创 深度学习从入门到精通——词向量介绍及应用

词向量(Word embedding),即把词语表示成实数向量。“好”的词向量能体现词语直接的相近关系。词向量已经被证明可以提高NLP任务的性能,例如语法分析和情感分析。词向量与词嵌入技术的提出是为了解决onehot的缺陷。它把每个词表示成连续稠密的向量,能较好地表达不同词之间的关联关系。如果两个词是关联的,那么这两个词分别对应的词向量的余弦相似度越接近于1。如果两个词关联关系比较小,那么这两个词分别对应的词向量的余弦相似度越接近于0.

2024-04-27 21:05:50 1287

原创 深度学习从入门到精通—Transformer

梯度消失和梯度爆炸:这是RNN最主要的问题。由于序列的长距离依赖,当错误通过层传播时,梯度可以变得非常小(消失)或非常大(爆炸),这使得网络难以学习。计算效率低:RNN由于其递归性质,必须按序列顺序执行计算,这限制了计算的并行性。对于长序列,这会导致训练过程非常慢。难以捕捉长距离依赖:尽管理论上RNN能够处理任何长度的序列,但在实践中,它们往往难以学习到输入序列中的长距离依赖关系。

2024-04-22 03:32:07 1101

原创 深度学习之图像分割从入门到精通——基于unet++实现细胞分割

这两个评分函数都以模型的真正例为分子,而分母则是真正例、假正例和假负例的总和,以此来衡量模型预测结果与真实标签的相似程度。这个损失函数的目标是最小化二元交叉熵损失和最大化 Dice 相似度,以达到更好的模型训练效果。Dice Coefficient 也是一种常用的图像分割评价指标,衡量模型输出和真实标签之间的相似度。IoU 是一种常用的图像分割评价指标,它衡量了模型输出与真实标签之间的重程度。表示真正例(模型正确预测为正样本的数量),表示假正例(模型错误预测为正样本的数量),表示二元交叉熵损失,

2024-04-21 11:04:10 856

原创 深度学习之目标检测从入门到精通——json转yolo格式

将JSON格式的标记数据中提取信息,转换为YOLO模型训练所需的格式。通过自动化这一过程,可以大大减少准备数据的时间和复杂性,提高机器学习项目的效率。

2024-04-20 20:00:14 493

原创 深度学习之目标检测从入门到精通——xml转yolo格式

这一行代码定义了感兴趣的类别列表,即那些我们希望在训练模型时识别的物体类别。

2024-04-20 19:45:52 565

原创 OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算

使用定义了包含68个点的面部关键点,用于眼部分析。])此函数计算眼部的纵横比,用于判断眼睛是否闭合。return ear。

2024-04-18 02:11:35 438 2

原创 OpenCV从入门到精通实战(八)——基于dlib的人脸关键点定位

使用定义了两组面部关键点,一组包含68个点,另一组包含5个点,这些关键点用于后续的特征提取。])

2024-04-18 02:03:04 664

原创 OpenCV从入门到精通实战(七)——探索图像处理:自定义滤波与OpenCV卷积核

接下来,我们实现一个名为convolve的函数,该函数接收一个图像和一个卷积核作为输入,并返回卷积后的结果。# 输入图像和核的尺寸# 选择pad,卷积后图像大小不变# 重复最后一个元素,top, bottom, left, right# 卷积操作# 提取每一个卷积区域# 内积运算# 保存相应的结果# 将得到的结果放缩到[0, 255]

2024-04-18 01:52:59 452

原创 OpenCV从入门到精通实战(六)——多目标追踪

在OpenCV中,有多种对象追踪器可用。我们将它们存储在一个字典中,便于后续使用。import cv2# 配置参数# opencv已经实现了的追踪算法# 实例化OpenCV's multi-object tracker# 视频流# 取当前帧# 到头了就结束break# resize每一帧width=600# 追踪结果# 绘制区域# 显示# 选择一个区域,按s# 创建一个新的追踪器# 退出break。

2024-04-18 01:36:42 693

原创 OpenCV从入门到精通实战(五)——dnn加载深度学习模型

从指定路径读取图像文件、利用OpenCV进行图像处理,以及使用Caffe框架进行深度学习预测的过程。

2024-04-18 01:03:39 750

原创 OpenCV从入门到精通实战(四)——答题卡识别判卷系统

实现答题卡识别系统中的各个功能。每个步骤都是自动化处理的关键部分,确保系统能够准确地读取和评分答题卡。通过这样的方式,可以大大减少人工操作的需求,提高评分的效率和准确性。

2024-04-18 00:45:54 1535

原创 OpenCV从入门到精通实战(三)——全景图像拼接

特征点检测与描述子计算使用 SIFT 算法检测图像的关键点,并计算每个点的描述子。这一步是识别图像中的特征并提取有用信息的关键步骤。特征点匹配使用 KNN 和比值测试来筛选良好的匹配点。这一步是确保两图中对应的特征点确实相似,为后续的图像对齐打下基础。计算单应性矩阵并进行图像变换使用 RANSAC 算法基于匹配点对计算单应性矩阵,这一矩阵能够描述一张图像到另一张图像的透视变换。使用该矩阵通过透视变换将一张图像变形,使其与另一张图像对齐。图像拼接。

2024-04-17 23:07:29 976

原创 OpenCV基本图像处理操作(十一)——图像特征Sift算法

在一定的范围内,无论物体是大还是小,人眼都可以分辨出来,然而计算机要有相同的能力却很难,所以要让机器能够对物体在不同尺度下有一个统一的认知,就需要考虑图像在不同的尺度下都存在的特点。尺度空间的获取通常使用高斯模糊来实现不同σ的高斯函数决定了对图像的平滑程度,越大的σ值对应的图像越模糊。D(x,y,σ)=[G(x,y,kσ)−G(x,y,σ)]∗I(x,y)=L(x,y,kσ)−L(x,y,σ)D(x, y, \sigma)=[G(x, y, k \sigma)-G(x, y, \sigma)] * I(

2024-04-17 22:53:43 872 1

原创 OpenCV基本图像处理操作(十)——图像特征harris角点

角点是图像中的一个特征点,指的是两条边缘交叉的点,这样的点在图像中通常表示一个显著的几角。在计算机视觉和图像处理中,角点是重要的特征,因为它们通常是图像中信息丰富的区域,可以用于图像分析、对象识别、3D建模等多种应用。角点的识别可以帮助在进行图像匹配和跟踪时提供稳定的参考点,这是因为角点在图像中的位置比较容易通过算法检测出来,且不易受到视角变化的影响。Harris 角点检测是一种流行的角点检测算法,用于从图像中识别出角点的位置,即图像中两条边交叉的特征点。如果响应函数的值超过某个阈值,则该点被认为是角点。

2024-04-17 22:39:59 1179

原创 OpenCV基本图像处理操作(九)——特征匹配

虽然Brute-Force匹配方法在小型或中等复杂度的数据集上可以非常有效,但它的计算成本随着特征点数量的增加而显著增加,这可能导致在大规模数据集上的性能问题。该方法通过逐一比较目标图像中的所有特征点与源图像中的特征点来寻找最佳匹配。:在蛮力匹配中,源图像的每个特征点的描述符都会与目标图像中每个特征点的描述符进行比较。:对提取出的每个特征点生成一个描述符,这个描述符捕捉了特征点周围的图像信息,通常是通过一定的算法(如SIFT、SURF或ORB等)来实现。:首先,从两个待比较的图像中提取关键特征点。

2024-04-17 22:00:41 735

原创 OpenCV基本图像处理操作(八)——光流估计

它基于这样的假设:在连续的视频帧之间,一个物体的移动会导致像素强度的连续性变化。空间一致:一个场景上邻近的点投影到图像上也是邻近点,且邻近点速度一致。小运动:随着时间的变化不会引起位置的剧烈变化,只有小运动情况下才能用前后帧之间单位位置变化引起的灰度变化去近似灰度对位置的偏导数。光流是空间运动物体在观测成像平面上的像素运动的“瞬时速度”,根据各个像素点的速度矢量特征,可以对图像进行动态分析,例如目标跟踪。status 特征点是否找到,找到的状态为1,未找到的状态为0。实现光流估计的方法有很多,包括。

2024-04-17 21:43:53 528

原创 OpenCV基本图像处理操作(七)——背景建模

由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。在测试阶段,对新来像素点的值与混合高斯模型中的每一个均值进行比较,如果其差值在2倍的方差之间的话,则认为是背景,否则认为是前景。将前景赋值为255,背景赋值为0。3.当后面来的像素值时,与前面已有的高斯的均值比较,如果该像素点的值与其模型均值差在3倍的方差内,则属于该分布,并对其进行参数更新。

2024-04-17 21:31:56 650

原创 OpenCV从入门到精通实战(二)——文档OCR识别(tesseract)

对四个坐标点进行排序,确定文档的四个角(左上,右上,右下,左下)。使用欧氏距离来计算和排序点。# 一共4个坐标点# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下# 计算左上,右下# 计算右上和左下此函数用于排序提供的四个点,确保点的顺序为左上、右上、右下和左下,这对后续的透视变换非常重要。使用cv2.getPerspectiveTransform和cv2.warpPerspective来计算变换矩阵并应用# 获取输入坐标点# 计算输入的w和h值# 变换后对应坐标位置。

2024-04-17 21:21:32 1460

原创 机器学习方法在测井解释上的应用-以岩性分类为例

机器学习在测井解释上的应用越来越广泛,主要用于提高油气勘探和开发的效率和精度。通过使用机器学习算法,可以从测井数据中自动识别地质特征,预测岩石物理性质,以及优化油气储层的评估和管理。:机器学习模型能够分析测井数据,如声波、电阻率、伽玛射线等,来识别不同的岩石类型和沉积环境。:使用机器学习算法可以根据测井数据预测岩石的孔隙度和渗透性,这对于评估储层质量和油气潜力非常关键。:机器学习方法可以帮助解释和量化储层的复杂特性,如裂缝、岩层压实度和含油饱和度等。

2024-04-16 22:21:23 942 5

原创 OpenCV基本图像处理操作(六)——直方图与模版匹配

模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1)

2024-04-16 01:43:47 521

原创 OpenCV基本图像处理操作(五)——图像数据操作

这段代码演示了使用 OpenCV 在图像边缘添加不同类型的边框的方法。代码首先指定了要添加到图像四周的边框大小,然后使用不同的边框类型来创建新的图像。最后,使用 matplotlib 展示了原始图像和各种边框效果。

2024-04-16 00:51:37 467

原创 OpenCV基本图像处理操作(四)——傅立叶变换

opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32 格式。cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)。得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。高通滤波器:只保留高频,会使得图像细节增强。低频:变化缓慢的灰度分量,例如一片大海。低通滤波器:只保留低频,会使得图像模糊。高频:变化剧烈的灰度分量,例如边界。

2024-04-16 00:31:39 365

原创 OpenCV基本图像处理操作(三)——图像轮廓

method:轮廓逼近方法。mode:轮廓检索模式。

2024-04-16 00:25:25 514

原创 OpenCV基本图像处理操作(二)——边缘算子与图像金字塔

较低的阈值可以捕获更多的边缘(但可能包括一些噪声),而较高的阈值只捕获最显著的边缘。这个算法的步骤包括使用高斯滤波器去除图像噪声、计算图像的梯度强度和方向、应用非极大值抑制(NMS)来消除边缘响应的假阳性以及应用双阈值检测和边缘连接。高斯金字塔主要用于图像的多尺度表示。Sobel算子是一种用于边缘检测的图像梯度算子,它通过计算图像亮度的空间梯度来突出显示图像中的边缘。在实践中,Sobel算子通过卷积框架应用于图像,分别计算x和y方向上的梯度,然后根据需要可能会结合这两个方向的梯度来得到边缘的完整表示。

2024-04-16 00:14:35 535

原创 OpenCV基本图像处理操作(一)——图像基本操作与形态学操作

图像基本操作; 图像形态学处理;

2024-04-15 21:44:09 1811

原创 基于LSTM的新闻中文文本分类——基于textCNN与textRNN

输入文本先通过embedding层转换为词向量表示。添加一个维度以适配卷积操作(unsqueeze(1))。应用多个卷积层和池化层(conv_and_pool),然后将结果拼接。应用Dropout。通过全连接层得到最终分类结果。"""配置参数"""self.train_path = dataset + '/data/train.txt' # 训练集self.dev_path = dataset + '/data/dev.txt' # 验证集。

2024-04-15 00:13:03 596

原创 基于torch的图像识别训练策略与常用模块

数据预处理部分:数据增强:torchvision中transforms模块自带功能,比较实用数据预处理:torchvision中transforms也帮我们实现好了,直接调用即可DataLoader模块直接读取batch数据网络模块设置:加载预训练模型,torchvision中有很多经典网络架构,调用起来十分方便,并且可以用人家训练好的权重参数来继续训练,也就是所谓的迁移学习需要注意的是别人训练好的任务跟咱们的可不是完全一样,需要把最后的head层改一改,一般也就是最后的全连接层,改成咱们

2024-04-14 09:08:29 311

原创 基于Pytorch实现图像分类——基于jupyter

解压数据集查阅数据模型搭建Mnist_NN((hidden1): Linear(in_features=784, out_features=128, bias=True)(hidden2): Linear(in_features=128, out_features=256, bias=True)(out): Linear(in_features=256, out_features=10, bias=True))

2024-04-14 01:29:05 516 1

原创 基于PyTorch神经网络进行温度预测——基于jupyter实现

未经标准化的数据如果直接用于模型训练,可能会因为量纲的差异而影响模型的性能,使得某些特征的权重过大或过小。通过标准化处理,可以确保每个特征对模型的影响是均衡的,从而提高算法的精确度和效率。加速模型收敛:在使用梯度下降等优化算法时,如果数据集的特征尺度差异较大,可能会导致优化过程中步长的不均匀,使得收敛速度变慢。应对异常值:标准化过程通常包括消除异常值的影响,比如通过将数据缩放到一个固定的范围(如0到1之间),或者通过z-score方法(即减去平均值,除以标准差)来减少某些极端值对整体数据分布的影响。

2024-04-14 01:16:29 1025

用于图像分割的代码源码

unet++实现代码参考源码

2024-04-21

图像分割的学习参考代码

图像分割的学习参考代码

2024-04-21

yolo v7的训练代码,包括导入导出

yolov7 的训练代码,包括数据集的制作,训练代码;

2024-04-20

Python库d和OpenCV来实现眼部闭合检测,主要用于评估用户是否眨眼

这段代码使用了Python库d和OpenCV来实现眼部闭合检测,主要用于评估用户是否眨眼。下面是代码的主要步骤和相关的代码片段: ### 步骤一:导入必要的库和设置参数 首先,代码导入了必要的Python库,如dlib、OpenCV和scipy。通过`argparse`设置了输入视频和面部标记预测器的参数。 ```python from scipy.spatial import distance as dist from collections import OrderedDict import numpy as np import argparse import time import dlib import cv2 ``` ### 步骤二:定义面部关键点索引 使用`OrderedDict`定义了包含68个点的面部关键点,用于眼部分析。 ```python FACIAL_LANDMARKS_68_IDXS = OrderedDict([ ("mouth", (48, 68)), ("right_eyebrow", (17, 22)), ("left_e

2024-04-18

使用Python库dlib和OpenCV来实现面部特征点的检测和标注

使用Python库dlib和OpenCV来实现面部特征点的检测和标注。

2024-04-18

实现一个简单的视频对象追踪应用,该应用支持多种追踪算法,并允许用户实时选择和追踪视频中的对象 这种技术在许多领域都有广泛的应用

实现一个简单的视频对象追踪应用,该应用支持多种追踪算法,并允许用户实时选择和追踪视频中的对象。这种技术在许多领域都有广泛的应用,包括安全监控、人机交互和自动驾驶车辆等。

2024-04-18

从指定路径读取图像文件、利用OpenCV进行图像处理,以及使用Caffe框架进行深度学习预测的过程

从指定路径读取图像文件、利用OpenCV进行图像处理,以及使用Caffe框架进行深度学习预测的过程。程序能够有效地对图像进行分类预测,并将结果直观地显示出来,适用于教学或研究目的。

2024-04-18

基于Opencv实现答题卡识别系统中的各个功能

实现答题卡识别系统中的各个功能。每个步骤都是自动化处理的关键部分,确保系统能够准确地读取和评分答题卡。自动化地完成了从读取图像到输出成绩的整个流程通过填涂密度判断学生选择,通过计算填涂区域的像素密度来判断学生的的选项。然后将这个选择与答案键中的正确选项进行比较,统计出正确的答案数量。

2024-04-18

停车位识别基于深度学习的停车位识别系统利用计算机视觉技术来自动检测和监控停车位的占用情况 地平线

基于深度学习的停车位识别系统利用计算机视觉技术来自动检测和监控停车位的占用情况。这种系统通常通过安装在停车场的摄像头来实现,摄像头捕捉的图像数据被送入深度学习模型进行分析。这些模型能够识别出图像中的停车位,并确定每个停车位是否被占用。此技术不仅提高了停车效率,减少了寻找停车位的时间,还可以被应用于智能交通系统中,实时更新停车信息,为驾驶者提供便利。深度学习模型的训练过程包括大量的图像数据,这些数据需要标注停车位的位置和状态,以训练模型准确识别。

2024-04-17

全景图像拼接;实现特征点检测与描述子

特征点检测与描述子计算: 使用 SIFT 算法检测图像的关键点,并计算每个点的描述子。这一步是识别图像中的特征并提取有用信息的关键步骤。 特征点匹配: 使用 KNN 和比值测试来筛选良好的匹配点。这一步是确保两图中对应的特征点确实相似,为后续的图像对齐打下基础。 计算单应性矩阵并进行图像变换: 使用 RANSAC 算法基于匹配点对计算单应性矩阵,这一矩阵能够描述一张图像到另一张图像的透视变换。 使用该矩阵通过透视变换将一张图像变形,使其与另一张图像对齐。 图像拼接: 将变换后的图像与另一张图像合并,形成一个单一的更大的图像。 结果展示: 可选地显示特征点的匹配情况,帮助理解两图是如何通过匹配点关联起来的。 ———————————————— 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 原文链接:https://blog.csdn.net/weixin_42917352/article/details/13789

2024-04-17

基于Opencv与tesseract 实现的文本识别

应用场景: 文档数字化:将纸质文档扫描后识别为数字文本。 自动化表单处理:从填写的表单中提取信息。 车牌识别:用于交通监控或自动收费系统。 辅助技术:帮助视觉障碍人士阅读印刷材料。 多语言支持:Tesseract 支持100多种语言的识别。 高度可定制:用户可以训练Tesseract来识别新的字体或优化特定语言的识别。 多种输出格式:Tesseract 可以输出普通文本、hOCR(带有布局信息的HTML)、PDF等格式。 集成易用:可以通过命令行使用,也可通过其API集成到其他应用程序中,比如通过pytesseract在Python中使用。

2024-04-17

基于OpenCV与模版匹配 实现信用卡、银行卡号识别

基于OpenCV与模版匹配 实现信用卡、银行卡号识别

2024-04-17

FasterRcnn.zip

FasterRcnn的代码复现

2021-11-17

MTCNN相关代码完美实现

深度学习 ,目标检测 、卷积神经网络

2021-11-05

Opencv从入门到跑路images.zip

用来实现博客上的资料

2021-07-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除